Navigation Links
New software tool identifies genetic mutations that influence disease risk

HOUSTON-Researchers at The University of Texas MD Anderson Cancer Center and other institutions have applied a newly developed software tool to identify genetic mutations that contribute to a person's increased risk for developing common, complex diseases, such as cancer. The research is published in the May 2014 edition of the journal Nature Biotechnology.

The technology, known as pVAAST (pedigree Variant Annotation, Analysis and Search Tool), combines two different statistical methods used for identifying disease-causing gene mutations. This combination approach outperforms individual familial analysis methods by increasing power or speed in which mutations are identified, and reducing complications through study design and analysis.

"This method allows for faster, more efficient identification and validation of genetic variants that influence disease risk," Chad Huff, Ph.D., professor of Epidemiology at MD Anderson. "This will eventually enable clinical labs to design genetic tests that provide better predictions of a person's individual risk of developing cancer."

The pVAAST tool combines two commonly used disease-gene identification methods, linkage analysis and association tests. Linkage analysis tracks the inheritance of genetic mutations in families to identify possible causal mutations. Association tests compare unrelated individuals with a specific disease to healthy individuals in search of a common mutation in one group or the other.

"Linkage analysis and association tests were initially designed for sparse genetic markers available from earlier genotyping techniques," said lead author of the study, Hao Hu, Ph.D., a postdoctoral fellow of Epidemiology at MD Anderson. "pVAAST integrates these two methods and repurposes them for next-generation DNA sequencing data, which is the state-of-art technique for genetics research. It fills in a genuine gap between molecular techniques and computational tools in familial disease studies."

Researchers also incorporated functional variant prioritization into the tool, which predicts whether a particular mutation in a family is damaging.

For this particular study, pVAAST analyzed data to identify the genetic causes of three diseases; enteropathy a chronic inflammation of the intestine, cardiac septal defects and Miller Syndrome a developmental defect of the face and multiple limbs. The tool was able to identify the exact mutations causing these diseases from DNA data from a single family. In the cardiac septal defects and Miller Syndrome families, the casual mutations had previously been identified and the results served as a proof of concept. In the enteropathy family, the causal mutation in the family was unknown prior to the analysis.

In addition, researchers applied pVAAST and three other statistical methods to three models of genetic disease: dominant, in which one defected copy of the gene is inherited from a parent; recessive, in which both copies of the gene must have the defect; or dominant caused by a new mutation not inherited from either parent. In each case, pVAAST required a fraction of the sample size of families to detect disease risk as the other methods did.

"For most rare diseases it is challenging to collect DNA samples from multiple patients," said Huff. "This makes it essential to be able to incorporate relatives in a study to improve the success rate."

In this study, the combined methodology of using multiple statistical methods increased the power of the results and reduced the complexity of the analysis. "This provides a gateway to identifying genetic variants that influence the risk of developing specific cancers," said Huff.

Many ongoing genetic studies recruit patients with a family history of cancer to search for inherited mutations that increase the risk of developing cancer. Huff says this tool will allow researchers to analyze the sequence data from these families to identify the genetic variants that are most likely responsible for the history of cancer in the families.

Huff says moving forward the major focus for the software will be to uncover new cancer-susceptibility genes. In a separate paper published in Cancer Discovery, the software was used to support the discovery of RINT1 as a new breast-cancer susceptibility gene.

"The identification of potential cancer susceptibility genes is only a first step, and years of additional research are required to characterize these variants to conclusively establish the degree to which they influence cancer risk," said Huff.


Contact: Katrina Burton
University of Texas M. D. Anderson Cancer Center

Related medicine news :

1. Applying math to biology: Software identifies disease-causing mutations in undiagnosed illnesses
2. CU-built software uses big data to battle forgetting with personalized content review
3. PowerSteering from Upland Software Earns High Marks in Review by GetApp
4. 2013 W2 1099 Forms Software by W2Mate.Com Updates Print / E-File Capability; Simplifies W2 1099 Filing
5. Silvertip Software Re-Launches RoomTime Room-Scheduling App; Early Adopter Program Expires Soon, Limited Space Remains
6. Zane Benefits Publishes New Information on Defined Contribution Admin Software
7. Olea Medical® Receives FDA 510(k) Clearance for Olea Sphere v2.3 Medical Imaging Software
8. IntelliSoft Group to Release New Version of Contract Management Software
9. 2013 1099 Software by Brings Pressure-Seal 1099s, SSN Masking and Blank Paper Printing to QuickBooks Users
10. Successful and Busy Veterinary Clinics: Become More Efficient with Updated and Advanced Time Clock Software
11. Reveals 1099-S Software for Filing 2013 1099-S Real Estate Forms; Print and E-File Updated
Post Your Comments:
Related Image:
New software tool identifies genetic mutations that influence disease risk
(Date:6/25/2016)... ... ... closing of Bruton Memorial Library on June 21 due to a possible lice infestation, as ... of head lice: the parasite’s ability to live away from a human host, and to ... one in the event that lice have simply gotten out of control. , As lice ...
(Date:6/25/2016)... ... ... As a lifelong Southern Californian, Dr. Omkar Marathe earned his Bachelors in ... School of Medicine at UCLA. He trained in Internal Medicine at Scripps Green Hospital ... at the UCLA-Olive View-Cedars Sinai program where he had the opportunity to train in ...
(Date:6/25/2016)... ... June 25, 2016 , ... Conventional wisdom preaches the ... In terms of the latter, setting the bar too high can result in disappointment, ... just slow progress toward their goal. , Research from reveals ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... June 19, ... the dangers associated with chronic pain and the benefits of holistic treatments, Serenity ... who are suffering with Sickle Cell Disease. , Sickle Cell Disease (SCD) is a ...
(Date:6/24/2016)... Fla. (PRWEB) , ... June 24, 2016 , ... Global ... Trend magazine’s 2016 Legal Elite. The attorneys chosen by their peers for this recognition ... Florida. , Seven Greenberg Traurig Shareholders received special honors as members of this year’s ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)...  Arkis BioSciences, a leading innovator in the ... cerebrospinal fluid treatments, today announced it has secured ... led by Innova Memphis, followed by Angel Capital ... Arkis, new financing will accelerate the commercialization of ... of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... , June 23, 2016 ... "Pharmaceutical Excipients Market by Type (Organic Chemical (Sugar, ... Formulation (Oral, Topical, Coating, Parenteral) - Global Forecast to ... The global pharmaceutical excipients market ... at a CAGR of 6.1% in the forecast period ...
(Date:6/23/2016)... 23, 2016 Capricor Therapeutics, ... a biotechnology company focused on the discovery, development ... patient enrollment in its ongoing randomized HOPE-Duchenne clinical ... 50% of its 24-patient target. Capricor expects the ... quarter of 2016, and to report top line ...
Breaking Medicine Technology: