Navigation Links
New 'knock-out' gene model provides molecular clues to breast cancer

New insights into the role of estrogen receptor in mammary gland development may help scientists better understand the molecular origin of breast cancer, according to new research from the University of Cincinnati (UC).

About a decade ago, U.S. scientists at the National Institutes of Health (NIH) developed a standard estrogen receptor (ER) gene knock-out mouse model to study the estrogen receptors role in human diseases.

Unfortunately, because these mice lacked mammary glands as a consequence of genetic manipulation, using this model to study the relationship between the estrogen receptor and breast cancer proved ineffective, explains Sohaib Khan, PhD, professor of cell and cancer biology at UC.

Knocking out the estrogen receptor gene for the entire genome, as the NIH scientists did, doesnt just affect the function of the receptor in all estrogen-responsive organs. It also creates an imbalance in the bodys circulating sex hormone levels, which could affect other physiological functions, Khan adds. An alternative model was clearly needed to study the intricacies of estrogen receptors involvement in this disease.

Estrogen receptor is a cellular protein that binds with the hormone estrogen and facilitates action in different parts of the body, including the mammary gland. Research has shown that about 70 percent of breast cancer patients have estrogen receptor-positive breast cancer, meaning their tumors will have some beneficial response to anti-estrogen drugs like tamoxifen (ta-MOX-ee-fen, marketed as Nolvodex).

After two years of work, Khan says his team has developed a knock-out mouse model that will allow scientists to study the role of estrogen receptor in specific organs (for example, mammary glands) without affecting estrogen-signaling throughout the rest of its body.

Khan used what is called a conditional knock-out technique to develop a new mouse model that retains estrogen receptor in all tissues except mammary tissue, allowing scientists to study the receptors role in breast development and breast cancer.

Using this model, Khans team found that knocking out the gene only in mammary tissue resulted in abnormalities that compromised milk production in the nursing female. This suggests that estrogen expression is essential for normal duct development during puberty, pregnancy and lactation.

Khan and his coworkers report the creation of this model and its potential implications in an early online edition of the Proceedings of the National Academy of Sciences on Sept. 4, 2007, followed by the print issue Sept. 11, 2007. The study directly refutes previous research, which suggests that estrogen receptor in epithelial cells was not essential to normal mammary gland development.

Mammary tissue is made up of two cell typesstromal cells, which give the tissue structure, and epithelial cells, which make up the lining of the mammary gland and become cancerous in the majority of breast cancers.

Unlike other organs in the body, the mammary glands develop after birth in response to increases in circulating hormones. This triggers growth of a network of branched ducts throughout the breast tissue that do not change again until a woman becomes pregnant.

Even though the relationship between the estrogen receptor and breast cancer is well established, we still know very little about the receptors mechanism of action, explains Khan, corresponding author of the study. Unless we study those mechanisms more closely, improved strategies for breast cancer treatments will not be possible.

Premenopausal women with breast cancer are currently given five years of tamoxifen, a drug that blocks the estrogen receptor action in cancer cells, to prevent recurrence. Studies have shown that the drug reduces recurrence in 40 percent of the women who take it, but Khan says many women eventually develop resistance to the drug.

Using this unique mouse model, UC researchers are currently collaborating with scientists at Dana Farber Cancer Institute/Harvard Medical School to understand the relationship between estrogen-signaling and oncogene-mediated breast cancer development. Future findings from these studies could help scientists better understand the molecular origin of breast cancer and develop new drugs to more effectively treat it.


Contact: Amanda Harper
University of Cincinnati

Related medicine news :

1. Down syndrome simulated in animal model after successful chromosome transplantation
2. Novel computer model for breast cancer
3. MRI, To Detect Remodeling Of Heart and Help Preserve Function
4. Synthetic protein found to relieve arthritis symptoms in animal model
5. Researchers Develop Mouse Model Of Brain Tumor
6. New Model for understanding Tumor Metastasis
7. Mathematical Model Can Now Help Predict Asthma Risk
8. Model Kate Moss - Re-Birth After Humiliation
9. Heart transplanted infants better model for developing AIDS treatment
10. Mice model to study bacterial therapeutic pathway
11. Womens Self-Esteem Not Lowered By Seeing Ultra Thin Models
Post Your Comments:
(Date:12/1/2015)... ... December 01, 2015 , ... ... has been selected as a finalist in this year’s Fierce Innovation Awards: Healthcare ... IT Healthcare was recognized as a finalist in the category of Digital Solutions ...
(Date:12/1/2015)... ... December 01, 2015 , ... Lutronic, a leading innovator of aesthetic and ... to the devices for sale in the United States. Clarity is a Superior ... nm Nd:YAG lasers, into a single platform that is easy to own and operate. ...
(Date:12/1/2015)... ... 01, 2015 , ... PYA’s latest white paper, “ PYA ... main “pain point” for merging or aligning healthcare provider organizations—when mergers and other ... This quick-read guidance suggests that failing to recognize the power of an ...
(Date:12/1/2015)... ... 2015 , ... PartnerTech , a leader in high-tech ... 2008. Gary Bruce, President of PartnerTech North America, currently serves as Director for ... of time in Sweden since joining PartnerTech based in Malmo, Sweden. He has ...
(Date:12/1/2015)... ... December 01, 2015 , ... Nurotron Biotechnology Co., Ltd., maker of ... to date. , The order will be from the China Disabled Persons’ Federation, ... System is an effective solution for children and adults suffering from severe and ...
Breaking Medicine News(10 mins):
(Date:12/1/2015)... India , December 1, 2015 ... market research report "Immunotherapy Drugs Market by Type of Drug ... Checkpoint Inhibitors), Epidemiology, Regulatory and Pipeline Analysis - Global Forecast ... is poised to reach USD 73,529.2 Million by 2020 from ... from 2015 to 2020. Browse 37 ...
(Date:12/1/2015)... , 1 de diciembre de 2015 /PRNewswire/ ... para cuchillas de precisión, develó hoy un ... identidad de marca. El nuevo logo destaca ... y la ingeniería de productos con cuchillas ... ...
(Date:12/1/2015)... 2015 During the recent 2015 Transcatheter ... Francisco, CA , Medinol Ltd. continued to ... During a satellite symposium, "The BioNIR eDES: The ... Restenosis", a renowned physician panel discussed the key ... Coronary Stent System and the Medinol eDES Coronary ...
Breaking Medicine Technology: