Navigation Links
Neural stem cells maintain high levels of reactive oxygen species, UCLA study finds
Date:1/6/2011

For years, the majority of research on reactive oxygen species (ROS) ions or very small molecules that include free radicals has focused on how they damage cell structure and their potential link to stroke, cardiovascular disease and other illnesses.

However, researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have shown for the first time that neural stem cells, the cells that give rise to neurons, maintain high levels of ROS to help regulate normal self-renewal and differentiation.

The findings, published in the Jan. 7, 2011 issue of the journal Cell Stem Cell, may have significant implications for brain repair and abnormal brain development.

"Everyone thinks of ROS as things that kill cells, and they do," said Dr. Harley Kornblum, a professor at the Intellectual and Developmental Disabilities Research Center in the Semel Institute of Neuroscience and Behavior and senior author of the study. "Stem cells generally have been thought to maintain low levels of ROS to protect against damage, so our findings were surprising and we hope to be able to exploit this to promote neural repair and explore diseases such as autism and brain cancer."

The study also found that the neural stem cells were highly responsive to ROS stimulation, which increased their growth and differentiation. Conversely, diminishing cellular levels of ROS in the neural stem cells interfered with normal cell function in mice and in human and mouse cell lines.

"It wasn't just that neural stem cells maintained high ROS levels" said Janel Le Belle, an assistant researcher in Kornblum's lab and lead author of the study. "Changes in cellular ROS can affect how the stem cells function. This study could lead to an understanding of how elevated ROS due to environmental factors might play a role in brain overgrowth, such as occurs in some cases of autism."

The body has a system to make ROS when it needs it. Some cells, such as immune cells, surround bacteria or viruses and use ROS to kill the invading microbes. Outside influences such as stress and environmental factors such as exposure to radiation can increase ROS levels in cells.

Although ROS is produced by all cells in a passive manner as a by-product of normal cell metabolism, some cells also produce ROS in a directed manner using ROS-producing enzymes like NADPH oxidase (NOX). NOX-generated ROS can act as second messengers in tightly controlled signal transduction pathways for many growth and trophic factors. However, too much ROS damages and ultimately kills cells, so finding the correct balance is vital, Kornblum said. And in fact, when the neural stem cells in the study were given too much ROS, they did die.

Kornblum and his team also found that the ROS-mediated stem cell self-renewal and differentiation of these cells into neurons depended on a cell signaling pathway called PI3K/Akt, which is known to be involved in cellular functions such as cell growth, proliferation, differentiation, motility and survival. NOX-generated ROS affect PI3K/Akt signaling by causing the inactivation of the PTEN protein, an important tumor suppressor and negative regulator of the pathway, by oxidizing a cysteine residue in the protein, which inactivates its function.

Kornblum and his collaborators at UCLA, including Dr. Hong Wu, a professor of molecular and medical pharmacology and a co-author of the study, have been studying the PI3K pathway for years. The pathway is activated in some diseases, for example a subset of autism cases and in tuberous sclerosis, a rare, multi-system genetic disease that causes non-malignant tumors to grow in the brain and in other vital organs. The pathway also can be activated in certain cancers.

"One of our hypotheses is that in these disease states, for instance in autism, that in those with a genetic predisposition to PI3K activation, exposure to a stressor that increases ROS levels can exacerbate the predisposition, perhaps promoting the disease," Kornblum said.

In brain tumors, if the pathway gets activated in cells already susceptible to becoming cancerous, it may promote the proliferation of brain tumor cells or the propagation of brain tumors. Blocking the pathway, Kornblum said, may be one way to interrupt the malignant process.

Going forward, Kornblum and his team will seek to determine whether brain cancer cells use elevated ROS and the PI3K pathway to promote their own growth. Le Belle said they will also test whether elevated ROS during brain development can contribute to brain overgrowth in Autism. Additionally, the team will test to see if they can exploit the ROS-activated pathway to promote brain repair, for example, increasing the production of new neurons to replace damaged or dead neurons.


'/>"/>

Contact: Kim Irwin
kirwin@mednet.ucla.edu
310-206-2805
University of California - Los Angeles
Source:Eurekalert

Related medicine news :

1. Swiss agency approves clinical trial of UCI-created neural stem cell therapy
2. Neuralstem files FDA application for first drug therapy
3. How do neural stem cells decide what to be -- and when?
4. Neuralstem updates ALS clinical trial progress
5. Neuralstem chief scientific officer to take part in World Stem Cell Summit plenary session
6. Neuralstem stem cells survive and differentiate into neurons in rats with stroke
7. Misfolded neural proteins linked to autism disorders
8. The neural basis of the depressive self
9. Hurts so good -- neural clues to the calming effects of self-harm
10. Neuralstem files FDA application for first chronic spinal cord injury stem cell trial
11. Human neural stem cells restore motor function in mice with chronic spinal cord injury
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/6/2016)... (PRWEB) , ... December 06, 2016 , ... ... a one-stop portal for all the knowledge resources, including white papers, guides, handbooks, ... and more. , To access more than 9,000 documents, webinars and videos ...
(Date:12/6/2016)... ... ... Keeping Gift Season Safe, In a season stacked with gift-giving opportunities, it's important ... This is the idea behind Safe Toys and Gifts Month, which sets aside December ... gifts for children. For companies that produce goods that fall into this category, it's ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... authorized OSHA Training Institute Education Center headquartered in Northern California, has announced the ... providing occupational safety and health training to public sector employees. , “The primary ...
(Date:12/5/2016)... , ... December 05, 2016 , ... "FCPX Overlay Glare ... but natural lighting effect without heavy rendering or complicated compositing," said Christina Austin - ... media to create an organic spectrum of lights that simulates the look of a ...
(Date:12/5/2016)... ... December 05, 2016 , ... ... been featured in SuperbCrew magazine, a leading online tech news platform connecting technology ... now featured on SuperbCrew.com, explores the state of enterprise mobility security today, and ...
Breaking Medicine News(10 mins):
(Date:12/5/2016)... Dec. 5, 2016 Spain Glaucoma Surgery Devices ... report, "Spain Glaucoma Surgery Devices Market Outlook to 2022", ... Devices market. The report provides value, in millions of ... within market segements - Canaloplasty Micro Catheters and Glaucoma ... and distribution shares data for each of these market ...
(Date:12/5/2016)... Special purpose needles are used in target specific ... cells from organs or lumps and are available in the ... market for special purpose needles is showing a steady growth ... the global special purpose needles market is projected to expand ... and is expected to be valued at US$ 17,261.5 million ...
(Date:12/5/2016)... and BOCA RATON, Fla. ... Institute for the Commercialization of Public Research ... finalized a funding agreement SegAna, LLC, an ... at University of Central Florida. The Florida Institute ... and bridges early funding gaps for companies spinning ...
Breaking Medicine Technology: