Navigation Links
Nanodrug targeting breast cancer cells from the inside adds weapon: Immune system attack

LOS ANGELES (Aug. 9, 2013) A unique nanoscale drug that can carry a variety of weapons and sneak into cancer cells to break them down from the inside has a new component: a protein that stimulates the immune system to attack HER2-positive breast cancer cells.

The research team developing the drug led by scientists at the Nanomedicine Research Center, part of the Maxine Dunitz Neurosurgical Institute in the Department of Neurosurgery at Cedars-Sinai Medical Center conducted the study in laboratory mice with implanted human breast cancer cells. Mice receiving the drug lived significantly longer than untreated counterparts and those receiving only certain components of the drug, according to a recent article in the Journal of Controlled Release.

Researchers from the Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai, the Division of Surgical Oncology at UCLA, and the Molecular Biology Institute at UCLA also participated in the study.

Unlike other drugs that target cancer cells from the outside, often injuring normal cells as a side effect, this therapy consists of multiple drugs chemically bonded to a "nanoplatform" that functions as a transport vehicle.

HER2-positive cancers making up 25 to 30 percent of breast and ovarian cancers tend to be more aggressive and less responsive to treatment than others because the overactive HER2 gene makes excessive amounts of a protein that promotes cancer growth. One commonly used drug, Herceptin (trastuzumab), often is effective for a while, but many tumors become resistant within the first year of treatment and the drug can injure normal organs it contacts.

But Herceptin is an antibody to the HER2 gene it naturally seeks out this protein so the research team used key parts of Herceptin to guide the nanodrug into HER2-positive cancer cells.

"We genetically prepared a new 'fusion gene' that consists of an immune-stimulating protein, interleukin-2, and a gene of Herceptin," said Julia Y. Ljubimova, MD, PhD, professor of neurosurgery and biomedical sciences and director of the Nanomedicine Research Center. "IL-2 activates a variety of immune cells but is not stable in blood plasma and does not home specifically to tumor cells. By attaching the new fusion antibody to the nanoplatform, we were able to deliver Herceptin directly to HER2-positive cancer cells, at the same time transporting IL-2 to the tumor site to stimulate the immune system. Attaching IL-2 to the platform helped stabilize the protein and allowed us to double the dosage that could be delivered to the tumor."

Ljubimova led the study with Manuel Penichet, MD, PhD, associate professor of surgery, microbiology, immunology and molecular genetics at the University of California, Los Angeles, David Geffen School of Medicine. Ljubimova said the UCLA collaborators developed the fusion gene, and Cedars-Sinai chemists Eggehard Holler, PhD, professor in the Department of Neurosurgery, and Hui Ding, PhD, assistant professor, performed the technically difficult task of attaching it to the nanoplatform. Ding is the journal article's first author.

The researchers also attached other components, such as molecules to block a protein (laminin-411) that cancer cells need to make new blood vessels for growth.

The nanodrug, Polycefin, is in an emerging class called nanobiopolymeric conjugates, nanoconjugates or nanobioconjugates. They are the latest evolution of molecular drugs designed to slow or stop cancers by blocking them in multiple ways. Polycefin is intended to slow their growth by entering cells and altering defined targets. The new version also stimulates the immune system to further weaken cancers.

"We believe this is the first time a drug has been designed for nano-immunology anti-cancer treatment," Ljubimova said.

Bioconjugates are drugs that contain chemical "modules" attached (conjugated) to a delivery vehicle by strong chemical bonds. The nanoconjugate exists as a single chemical unit, and the tight bonds prevent the components from getting damaged or separated in tissues or blood plasma during transit. With inventive drug engineering, the anti-tumor components activate inside tumor cells.

"More study is needed to confirm our findings, improve the effectiveness of this approach and shed light on the anti-cancer mechanisms at work, but it appears that the nanobioconjugate may represent a new generation of cancer therapeutics in which we launch a multipronged attack that directly kills cancer cells, blocks the growth of cancer-supporting blood vessels and stimulates a powerful antitumor immune response," Ljubimova said, adding that this and previous animal studies have found the nanodrug to be a safe and efficient delivery platform.

Nano researchers manipulate substances and materials at the atomic level, generally working with substances smaller than 100 nanometers. Cedars-Sinai's nanoconjugate is estimated to be about 27 nanometers wide. A human hair is 80,000 to 100,000 nanometers wide.


Contact: Sandy Van
Cedars-Sinai Medical Center

Related medicine news :

1. Scientists tailor cell surface targeting system to hit organelle ZIP codes
2. IBN discovers human neural stem cells with tumor targeting ability
3. New targeting technology improves outcomes for patients with atrial fibrillation
4. Targeting inflammation to prevent, treat cancers
5. Targeting inflammation to treat depression
6. Targeting downstream proteins in cancer-causing pathway shows promise in cell, animal model
7. Targeting neurotransmitter may help treat gastrointestinal conditions
8. Salmonella spreads by targeting cells in our gut, study shows
9. Kentucky team inhibits Alzheimers biomarkers in animal model by targeting astrocytes
10. Spread of cancer cells may be slowed by targeting of protein
11. Targeting use of acid-suppressants in hospital patients
Post Your Comments:
(Date:11/27/2015)... ... November 27, 2015 , ... According to an article ... Dental Association meeting in Washington D.C. revolved around the fact that proper dental care, ... The talk stressed the link between periodontal disease (more commonly referred to as gum ...
(Date:11/27/2015)... ... November 27, 2015 , ... ... care in America. As people age, more care is needed, especially with Alzheimer’s, ... and medical professionals are being overworked. The forgotten part of this equation: 80 ...
(Date:11/27/2015)... ... November 27, 2015 , ... "When I was traveling, I ... Hillside, N.J. "Many people catch diseases simply from sitting on such dirty toilet ... protected from germs." , He developed the patent-pending QUDRATECS to eliminate the need ...
(Date:11/27/2015)... (PRWEB) , ... November 27, 2015 , ... ProSidebar: ... in Final Cut Pro X. With ProSidebar: Fasion, video editors can easily add ... ProSidebar as a minimalist title opener. Utilize presets featuring self-animating drop zones, lines, ...
(Date:11/27/2015)... , ... November 27, 2015 , ... ... the well-respected Microsoft Dynamics SL User Group (MSDSLUG). Recognized as Microsoft’s official group ... group of Microsoft Dynamics SL software users, partners, industry experts and representatives. Intellitec ...
Breaking Medicine News(10 mins):
(Date:11/26/2015)... 2015 ) ... "2016 Future Horizons and Growth Strategies in ... Supplier Shares, Country Segment Forecasts, Competitive Intelligence, ... --> ) has announced ... Horizons and Growth Strategies in the German ...
(Date:11/26/2015)... November 26, 2015 ... addition of the  "2016 Future Horizons ... Therapeutic Drug Monitoring (TDM) Market: Supplier ... Emerging Opportunities"  report to their offering.  ... announced the addition of the  "2016 ...
(Date:11/26/2015)... 2015 Research and Markets ( ... "2016 Future Horizons and Growth Strategies in the ... Country Segment Forecasts, Competitive Intelligence, Emerging Opportunities" ... --> --> This new 247-page ... therapeutic drug monitoring market, including emerging tests, technologies, ...
Breaking Medicine Technology: