Navigation Links
NIH study reveals new genetic culprit in deadly skin cancer

Drawing on the power of DNA sequencing, National Institutes of Health researchers have identified a new group of genetic mutations involved in the deadliest form of skin cancer, melanoma. This discovery is particularly encouraging because some of the mutations, which were found in nearly one-fifth of melanoma cases, reside in a gene already targeted by a drug approved for certain types of breast cancer.

In the United States and many other nations, melanoma is becoming increasingly more common. A major cause of melanoma is thought to be sun exposure; the ultraviolet radiation in sunlight can damage DNA and lead to cancer-causing genetic changes within skin cells.

In work published in the September issue of Nature Genetics, a team led by Yardena Samuels, Ph.D., of the National Human Genome Research Institute (NHGRI) sequenced the protein tyrosine kinase (PTK) gene family in tumor and blood samples from people with metastatic melanoma. The samples were collected by the study's coauthor Steven Rosenberg, M.D., Ph.D., a leading expert on melanoma and chief of surgery at the National Cancer Institute (NCI).

The PTK family includes many genes that, when mutated, promote various types of cancer. However, relatively little had been known about roles played by PTK genes in human melanoma. The NIH study was among the first to use large-scale DNA sequencing to systematically analyze all 86 members of the PTK gene family in melanoma samples.

The team's initial survey, which involved samples from 29 melanoma patients, identified mutations in functionally important regions of 19 PTK genes, only three of which had been previously implicated in melanoma. The researchers then conducted more detailed analyses of those 19 genes in samples from a total of 79 melanoma patients.

One of the newly implicated genes stood out from the rest. Researchers detected mutations in the ERBB4 gene (also known as HER4) in 19 percent of patients' tumors, making it by far the most frequently mutated PTK gene in melanoma. In addition, researchers found that many ERBB4 mutations were located in functionally important areas similar to those seen in other PTK oncogenes involved in lung cancer, brain cancer and gastric cancer.

Next, the researchers moved on to laboratory studies of melanoma cells with ERBB4 mutations. They found that these melanoma cells were dependent on the presence of mutant ERBB4 for their growth. What's more, the melanoma cells grew much more slowly when they were exposed to a chemotherapeutic drug known to inhibit ERBB4. The drug, called lapatinib (Tykerb), was approved by the Food and Drug Administration in 2007 for combination use in breast cancer patients already taking the drug capecitabine (Xeloda).

Encouraged by their study results, the researchers are planning a clinical trial using lapatinib in patients with metastatic melanoma harboring ERBB4 mutations. The clinical trial will be conducted under the direction of Dr. Rosenberg at the NIH Clinical Center. "This collaborative study represents an ideal example of how sophisticated genetic analyses can be translated to the benefit of cancer patients," said Dr. Rosenberg.

"We have found what appears to be an Achilles' heel of a sizable share of melanomas," said Dr. Samuels, who is an investigator in the Cancer Genetics Branch of the NHGRI's Division of Intramural Research. "Though additional work is needed to gain a more complete understanding of these genetic mutations and their roles in cancer biology, our findings open the door to pursuing specific therapies that may prove useful for the treatment of melanoma with ERBB4 mutations."

In addition to ERBB4, the researchers identified two additional PTK genes, FLT1 and PTK2B, with a relatively high rate of mutations in melanoma. Each of these genes was mutated in about 10 percent of the tumor samples studied.

NHGRI Scientific Director Eric D. Green, M.D., Ph.D., pointed out how such research is helping to lay the groundwork for the era of personalized medicine. "We envision a day when each cancer patient will have therapies tailored to the specific genetic profile of his or her tumor. Ultimately, this should lead to more effective and less toxic approaches to cancer care," said Dr. Green, who directs the NIH Intramural Sequencing Center, which generated the DNA sequence data for the melanoma study.

In addition to NIH scientists, the team included a researcher from the Johns Hopkins Kimmel Cancer Center in Baltimore.

In May 2009, Dr. Samuel's group reported in Nature Genetics another large-scale DNA sequencing study of a different group of genes involved in melanoma, the matrix metalloproteinase (MMP) gene family. This earlier study found that one gene, MMP-8, thought to spur cancerous growth actually served to inhibit it. Those findings are now helping to shape melanoma treatment strategies aimed at MMP genes.


Contact: Geoffrey Spencer
NIH/National Human Genome Research Institute

Related medicine news :

1. Penn study finds pro-death proteins required to regulate healthy immune function
2. New study shows promise in reducing surgical risks associated with surgical bleeding
3. Study, meta-analysis examine factors associated with death from heatstroke
4. Study suggests loss of 2 types of neurons -- not just 1 -- triggers Parkinsons symptoms
5. Study says COPD testing is not measuring up
6. Preclinical study suggests organ-transplant drug may aid in lupus fight
7. Ability to cope with stress can increase good cholesterol in older white men, study finds
8. High alcohol consumption increases stroke risk, Tulane study says
9. Mailman School of Public Health study examines link between racial discrimination and substance use
10. Pitt study finds inequality in tobacco advertising
11. Stanford study highlights cost-effective method of lowering heart disease risks
Post Your Comments:
(Date:11/30/2015)... , ... November 30, 2015 , ... ... at a University of Delaware Accounting and Management of Information Systems course. Based ... for mid-market businesses. Sommer will speak at before student in the Enterprise Resource ...
(Date:11/30/2015)... , ... November 30, 2015 , ... ... continuing education course in Dallas, TX, on January 29 and 30, 2016. The ... improve the functions of their practices, to learn how to better succeed in ...
(Date:11/30/2015)... PA (PRWEB) , ... November 30, 2015 , ... A ... 15th annual Regional Biotech Conference, organized by the Baruch S. Blumberg Institute. , The ... 100 of the area’s life science and biotechnology leaders for the conference, which focused ...
(Date:11/30/2015)... ... November 30, 2015 , ... HemoTreat™ has announced ... its hemorrhoid ointment to its website. , “Our goal is simple:” says Michael ... hemorrhoids. Adding the comparison chart and ingredient list allows our customers to quickly ...
(Date:11/30/2015)... ... November 30, 2015 , ... ChiliPad , Chili ... maximize recovery through quality sleep. Tim DiFrancesco, training coach for the LA Lakers, ... sleep. ChiliPad precisely regulates the surface temperature of each side of the bed ...
Breaking Medicine News(10 mins):
(Date:11/30/2015)... Nov. 30, 2015  PTS Diagnostics, the U.S.-based manufacturer ... analyzers, A1CNow ® systems, and PTS Detect™ ... of patents that will propel the company into the ... Europe . The technology is a ... those on smartphones and tablets, and uses test strip ...
(Date:11/30/2015)... , Nov. 30, 2015 Cumberland Pharmaceuticals (CPIX), ... present live at on December 3, 2015. ... TIME: 3:15p.m. ET LINK: ... LINK: --> ... event where investors are invited to ask the company questions ...
(Date:11/30/2015)... LAKE CITY , Nov. 30, 2015 Booth ... (NYSE: VAR ) will exhibit a broader array of ... of the Radiological Society of North America ... Varian exhibit at the meeting will feature X-ray components "At ... CT tube, a line of products from Varian,s Claymount brand, ...
Breaking Medicine Technology: