Navigation Links
NIH, USU study maps hotspots of genetic rearrangement
Date:4/5/2011

Researchers have zoomed in on mouse chromosomes to map hotspots of genetic recombination sites where DNA breaks and reforms to shuffle genes. The findings of the scientists at the National Institutes of Health and Uniformed Services University of Health Sciences (USU) have the potential to improve the detection of genes linked to disease and to help understand the root causes of genetic abnormalities. The research, published online April 3 in Nature, moves scientists one step closer to understanding how mammals evolve and respond to their environments.

In this image, hundredfold magnification of a single sperm precursor cell shows the chromosomes in green and the places where these chromosomes are most likely to break apart and re-form, called genetic recombination hotspots in red. Genetic rearrangements at these hotspots have the potential to shuffle maternal and paternal chromosomes, the end results of which ensure that the genetic information in every sperm cell is unique. Source: Fatima Smagulova, Ph.D., USU, and Kevin Brick, Ph.D., NIDDK, NIH.Genetic recombination occurs at hotspots in cells that form sperm and eggs. At these sites, rearrangements ensure that the combination of genes passed on to every sperm and egg cell is unique. By studying precursors of mouse sperm cells during the early stages of genetic recombination, the scientists have created a precise, first-of-its-kind map of recombination hotspots in a multi-celled organism.

With this map, researchers also hope to pinpoint where, how and why abnormalities in the number of chromosomes can occur. Such abnormalities for instance, the extra copy of chromosome 21 that gives rise to Down syndrome are the leading known cause of miscarriages, congenital birth defects, and mental retardation in the United States.

"We wanted to figure out how recombination varied across the genome," said R. Daniel Camerini-Otero, M.D., Ph.D., one of the senior authors on the paper and a researcher at the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). "Hotspots are the starting point for the process that ensures that every person is unique. These hotspots facilitate the adaptation of populations to environmental influences through evolution. Our findings will allow us to explore things like how environment and genetic background affect the recombination landscape."

"Now that we have mapped recombination hotspots genome-wide, we can actually carry out studies on the whole mouse genome. This will be very beneficial in extending our knowledge to organisms as complex as humans," said Galina Petukhova, Ph.D., assistant professor in the USU Department of Biology and one of the paper's senior authors. "Faulty recombination can lead to infertility or birth defects, and this work brings us closer to our ultimate goal of helping to prevent these health issues."

Camerini-Otero compared the map's new level of precision to the difference between being able to zoom in to see a city block to being able to zoom in to see each building on the block. "What we were looking for was resolution that was much higher than ever seen before," said Camerini-Otero. "Now that we can actually see these individual events of genetic recombination, we can begin to understand their molecular structure."

The researchers including lead authors Fatima Smagulova, Ph.D., of USU, and Ivan V. Gregoretti, Ph.D., of NIDDK used cutting-edge DNA sequencing technology and lots of computational power to take a snapshot of all the individual pieces of DNA that were taking part in recombination at a given moment in living cells. They then used this snapshot of short DNA pieces to draw a map of where chromosomes have an increased potential to be broken and to come back together in new ways.

Mice were used as subjects for this study because the researchers needed a population that could be created with a specific and identical genetic background. With this initial study a success, they hope to apply the same techniques to study recombination in people in the near future.

The end result is a catalog of about 10,000 hotspots and resembles a detailed map of where diversity can arise in the genome and of sites where such processes may go awry. The researchers next plan to apply what they've seen and learned with this new map to further understand chromosomal abnormalities, genetic recombination, genome stability and evolution.


'/>"/>

Contact: Amy F. Reiter
NIDDKMedia@mail.nih.gov
301-496-3583
NIH/National Institute of Diabetes and Digestive and Kidney Diseases
Source:Eurekalert  

Related medicine news :

1. Soy Foods OK After Breast Cancer: Study
2. Grant helps UT Southwestern researcher study causes of preterm birth
3. Penn study sheds light on end of life management of implanted defibrillators
4. Inner Ear Can Store Recent Sounds, Study Finds
5. Girls in Some Sports Face Raised Risk of Stress Fractures: Study
6. Study shows that modern surgery for scoliosis has good long-term outcomes
7. Compulsive Eaters May Have Food Addiction, Study Finds
8. Cases of Flattened Head Babies on the Rise, Study Finds
9. Evidence Weak to Support Many Medications for Autism: Study
10. Study provides first link between 2 major Parkinsons genes
11. Study Links Smoking, Breast Cancer in Older Women
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIH, USU study maps hotspots of genetic rearrangement
(Date:6/25/2016)... (PRWEB) , ... June 25, 2016 , ... "With 30 ... their specific project," said Christina Austin - CEO of Pixel Film Studios. , ... and all within Final Cut Pro X . Simply select a ProHand generator ...
(Date:6/25/2016)... ... ... Conventional wisdom preaches the benefits of moderation, whether it’s a matter of ... too high can result in disappointment, perhaps even self-loathing. However, those who set the ... Research from PsychTests.com reveals that behind the tendency to set low expectations ...
(Date:6/24/2016)... ... June 24, 2016 , ... ... Scientific Sessions in Dallas that it will receive two significant new grants to ... came as PHA marked its 25th anniversary by recognizing patients, medical professionals and ...
(Date:6/24/2016)... TX (PRWEB) , ... June 24, 2016 , ... People ... part in Genome magazine’s Code Talker Award, an essay contest in which patients and ... an award to be presented at the 2016 National Society of Genetic Counselors (NSGC) ...
(Date:6/24/2016)... ... , ... National recruitment firm Slone Partners is pleased to announce ... experience, as Vice President of North American Capital Sales at HTG Molecular . ... sales team in the commercialization of the HTG EdgeSeq system and associated reagents in ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... ANDOVER, Mass. and SAN CLEMENTE, Calif. ... California -based mobile pulmonary function testing company, is now ... portable PFT devices developed by ndd Medical Technologies , Inc. ... PFT testing done in hospital-based labs.  Thanks to ndd,s EasyOne PRO ... CA , can get any needed testing done in the ...
(Date:6/24/2016)... 2016  Arkis BioSciences, a leading innovator in ... durable cerebrospinal fluid treatments, today announced it has ... is led by Innova Memphis, followed by Angel ... investors.  Arkis, new financing will accelerate the commercialization ... release of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... 23, 2016  In a startling report released today, National ... by lacking a comprehensive, proven plan to eliminate prescription opioid overdoses. ... of how states are tackling the worst drug crisis in recorded ... – Kentucky , New Mexico ... . Of the 28 failing states, three – Michigan ...
Breaking Medicine Technology: