Navigation Links
Molecule tracking reveals mechanism of chromosome separation in dividing cells

University of Washington (UW) researchers are helping to write the operating manual for the nano-scale machine that separates chromosomes before cell division. The apparatus is called a spindle because it looks like a tiny wool-spinner with thin strands of microtubules or spindle fibers sticking out. The lengthening and shortening of microtubules is thought to help push and pull apart chromosome pairs.

Understanding how this machine accurately and evenly divides genetic material is essential to learning why its parts sometimes fail. Certain cancers or birth defects, like Down syndrome or Trisomy 18, result from an uneven distribution of chromosomes.

In a study published March 6 in the journal Cell, a team led by UW scientists reports on the workings of a key component of this machine. Named a kinetochore, it is a site on each chromosome that mechanically couples to spindle fibers.

"Kineochores are also regulatory hubs," the researchers noted. "They control chromosome movements through the lengthening and shortening of the attached microtubules. They sense and correct errors in attachment. They emit a "wait" signal until the microtubules properly attach." Careful control over microtubules, they added, is vital for accurate splitting of the chromosomes.

The lead researchers on the study were Andrew F. Powers and Andrew D. Frank from the UW Department of Physiology and Biophysics and Daniel R. Gestaut, from the UW Department of Biochemistry. The senior authors of the study were Charles "Chip" Asbury, assistant professor, and Linda Wordeman, associate professor, both of physiology and biophysics and both members of the UW Center for Cell Dynamics; and Trisha Davis, professor of biochemistry, and director of the Yeast Resource Center.

Asbury is known for research on molecular machines and motors, Wordeman for work on chromosome movement, and Davis for studies of spindle poles. All are part of the Seattle Mitosis Club led by Sue Biggins at the Fred Hutchinson Cancer Research Center.

To understand how the kinetochore functions, the scientists sought to uncover the basis for its most fundamental behavior: attaching microtubules. The most puzzling aspect of this attachment, according to the researchers, is that the kinetochore has to be strong yet dynamic. It has to keep a grip on the microtubule filaments even as they add and remove their subunits.

"This ability," the researchers said, "allows the kinetochore to harness microtubule shortening and lengthening to drive the movement of chromosomes."

The same coupling behavior is found in living things from yeast cells to humans, indicating that it was conserved during evolution as a good way of getting the job done.

The question is how this mechanism works. Previous studies implicated a large, multiprotein complex, Ndc80, as a direct contact point between kinetochores and microtubules. However, researchers had only a static view of the complex. The UW researchers used special techniques to manipulate and track the activity of the complex in a laboratory set-up.

The researchers were able to show that the Ndc80 complex was indeed capable of forming dynamic, load-bearing attachments to the tips of the microtubules, probably by forming an array of individually weak microtubule binding elements that rapidly bind and unbind, but with a total energy large enough to hold on. The mechanism will produce a molecular friction that resists translocation of the microtubule through the attachment site. Other scientists have dubbed the mechanism a "slip clutch."

This kind of coupler, the researchers added, is able to remain continuously attached to the microtubule tip during both its assembly and disassembly phases. The coupler also can harness the energy released during disassembly to produce mechanical force. Coupling may depend on positively charged areas on the complex that interact with negatively charged hooks on the microtubules by electrostatic force.

Based on their findings, the scientists propose arrays of Ndc80 complexes supply the combination of plasticity and strength that allows kinetechores to hold on loosely but not let go of the tips of the microtubules.


Contact: Leila Grau
University of Washington

Related medicine news :

1. Nostrum Pharmaceuticals Obtains Worldwide Licensing Rights From IMTECH for Clinical Development of the Small Molecule Caerulomycin and Its Proprietary Derivatives for Their Novel Indication of Immunosuppression
2. From molecules to populations: Fighting the epidemics of obesity and diabetes
3. OHSU School of Dentistry team discovers new molecule in blood-pressure control system
4. Researcher refining synthetic molecules to prevent HIV resistance
5. Tumors grow faster without blood-supply promoting molecule
6. Avineuro Announced Advancing Potent Small Molecule for Treatment of Alzheimers Disease to Clinical Development
7. MS patients have higher spinal fluid levels of suspicious immune molecule
8. Key protein molecule linked to diverse human chronic inflammatory diseases
9. Molecule Keeps Bacteria Like Salmonella in Check
10. Tiny molecule helps control blood-vessel development, UT Southwestern researchers find
11. Mouse Study Finds Molecule That Tells Hair to Grow
Post Your Comments:
(Date:11/28/2015)... ... , ... Trying to relax on a couch can actually be uncomfortable, so ... design due to personal experience with a bad back," he said. , This easy-to-use, ... well as increases support. It also makes it easier to eat, do other activities ...
(Date:11/27/2015)... Canada (PRWEB) , ... November 28, 2015 , ... There ... do we outperform our billings from last year? , This question has not been ... organizations are coming to the retirement age and the younger workforce don’t share the ...
(Date:11/27/2015)... ... ... According to an article published November 15th by ABC News, ... in light of the recent terrorist attacks in Paris, other cities are taking extra ... from reaching U.S. soil. Especially around special events that may be high-profile in nature, ...
(Date:11/27/2015)... ... November 27, 2015 , ... An inventor, from ... dispense prescription medications at home, so he invented the patent-pending ELECTRONIC M.D. , ... prescription medications. In doing so, it could help to prevent potential overdose situations. ...
(Date:11/27/2015)... ... November 27, 2015 , ... ... edition of USA Today in Atlanta, Dallas, New York, Minneapolis, South Florida, with ... digital component is distributed nationally, through a vast social media strategy and across ...
Breaking Medicine News(10 mins):
(Date:11/27/2015)... Pays-Bas, November 27, 2015 ... traitement photodynamique au Bremachlorin contre le cancer avancé. ... consistant à combiner l,immunothérapie au traitement photodynamique au ... --> Une nouvelle approche consistant à ... le cancer avancé.    Clinical ...
(Date:11/27/2015)... DUBLIN , Nov. 27, 2015 Research ... of the "Global Intrauterine Devices Market 2015-2019" ... --> In this report, the author ... intrauterine devices market for 2015-2019. To calculate the market ... of following type of products: Hormonal IUDs and copper ...
(Date:11/26/2015)... , 26 november 2015 AAIPharma ... de geplande investering aan van ten minste ... laboratoria en het mondiale hoofdkantoor in ... zal resulteren in extra kantoorruimte en extra ... de groeiende behoeften van de farmaceutische en ...
Breaking Medicine Technology: