Navigation Links
Misidentified and contaminated cell lines lead to faulty cancer science

AURORA, Colo. (June 20, 2012) -AURORA, COLO (June 20, 2012) -- Modern cancer therapies start in cells researchers compare cancer samples to healthy cells to discover how cancer is genetically different, and use cell lines to test promising new drugs. However, a University of Colorado Cancer Center study published this week in the journal Gynecologic Oncology shows that due to a high rate of contamination, misidentification and redundancy in widely available cell lines, researchers may be drawing faulty conclusions.

"I've seen faculty and graduate students leave my lab in tears when we discovered the cells on the label weren't the cells they were actually experimenting on," says Christopher Korch, PhD, investigator at the CU Cancer Center and director of the center's DNA Sequencing and Analysis Service, the paper's co-first author. "When you get a cell line, you have to look that gift horse in the mouth there's up to a 40 percent chance it's a Trojan horse, not what it says it is."

For example, the cell line known as HES has been widely used as a "normal" model of endometrial cells since its development in 1989. There are literally hundreds of papers that, for example, look for differences between endometrial cancer cells and these supposedly normal HES endometrial cells. Unfortunately, HES is not, in fact, an endometrial cell line. It's another cell line known as HeLa which was first derived from cervical cancer.

"In the past, the technology to check cell lines didn't exist and so you can't really blame past researchers. But today it's cheap, it's easy and the technology is widely available. There's no excuse to experiment on cells without first discovering what you're experimenting on. We've suggested that journals start requiring verification of cell lines as a prerequisite of publishing," says Andrew Bradford, PhD, CU Cancer Center investigator and associate professor in the CU School of Medicine Department of Obstetrics and Gynecology, the paper's senior author.

"In fact, the process of double-checking a cell line is the same process that Scotland Yard uses to identify murderers based on DNA evidence," says Monique Spillman, MD, PD, CU Cancer Center investigator and assistant professor in the CU School of Medicine Department of Obstetrics and Gynecology, the paper's co-first author. Here's how it works: You have a sample that you know is endometrial cells from a specific patient and you have a sample that purports to be (but may or may not be!) endometrial cells is there a match? If so, you've convicted the suspect cell line. If not, as the team so often found, just as DNA mismatch has exonerated death row inmates, DNA mismatch showing that a cell line doesn't match it's label can call into question perhaps decades worth of research done using the cells.

While a misidentified cell line seems likely due to a SNAFU on the part of a lab assistant with a faulty filing system, there are more ways than clerical error to end up with the wrong label on a sample of cells.

"I see two people working with different cultures in the same hood, or using the same growth medium for the same cultures with the same pipette," Korch says. "And especially HeLa is superwoman it can fly." HeLa cells can travel in aerosols and once they land where they shouldn't, they're so adaptive and aggressive that they tend to out compete other cell lines wherever they land contamination leads to a quick HeLa takeover and perhaps a vial labeled HES when in fact it's HeLa.

"If you're going to make conclusions about endometrial cancer based on a cervical cancer line, your results are going to be flawed. It's not the same genetic pathways," Spillman says.

With his tongue only somewhat in his cheek, Korch reiterates Spillman's point, saying, "If you're studying prostate cancer with a cervical cancer cell line, you're going to have problems because men with prostates don't tend to have cervixes."

The work of Korch, Bradford, Spillman and colleagues including Twila Jackson builds on earlier work at the CU Cancer Center by investigators Rebecca Schweppe and Bryan Haugen who found 50 percent misidentification or contamination in available thyroid cell lines for example, two were melanoma lines and another was a colon cancer line. The recent research finds the same systemic problems with cell lines of widely varying types.

"When you bring new cells into the lab, you need to work meticulously and carefully," says Korch. "You need to put them into quarantine until you know what they are."

Korch is working to put the group's data online, both allowing investigators elsewhere to compare their cell lines to the group's controls, and also to help research groups discover what, if not as labeled, some of the cell lines they tested might be. Again like criminal DNA evidence, it's all about building a database large enough to include a match.

Until then, "People really need to check their cells," says Bradford. "It's just that simple."

Contact: Erika Matich
University of Colorado Denver

Related medicine news :

1. Illnesses in Colorado childrens hospital prompts discovery of contaminated alcohol pads
2. Treat Rheumatoid Arthritis Early and Aggressively: Guidelines
3. Stress contributes to cognitive declines in women with breast cancer, researcher says
4. Report outlines successes, challenges in cancer prevention efforts
5. Diabetes Groups Issue New Guidelines on Blood Sugar
6. Guidelines say diet, exercise, weight control improve odds after cancer diagnosis
7. New guidelines deliver concise messages for implementing cardiovascular prevention
8. New Guidelines Issued for Severe Lupus
9. U.S. Report Outlines Strategies to Prevent Obesity
10. U.S. Task Force Issues Blood Pressure Guidelines
11. British experts update addiction treatment guidelines
Post Your Comments:
(Date:6/24/2016)... Angeles, CA (PRWEB) , ... June 24, 2016 , ... ... surgery procedures that most people are unfamiliar with. The article goes on to state ... procedures, but also many of these less common operations such as calf and cheek ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Marcy was in a crisis. Her son ... lash out at his family verbally and physically. , “When something upset him, he couldn’t ... would use it. He would throw rocks at my other children and say he was ...
(Date:6/24/2016)... ... 24, 2016 , ... Dr. Amanda Cheng, an orthodontist ... has extensive experience with all areas of orthodontics, including robotic Suresmile technology, ... , Micro-osteoperforation is a revolutionary adjunct to orthodontic treatment. It can be used ...
(Date:6/24/2016)... ... June 24, 2016 , ... People across the U.S. ... magazine’s Code Talker Award, an essay contest in which patients and their families pay ... be presented at the 2016 National Society of Genetic Counselors (NSGC) Annual Education Conference ...
(Date:6/24/2016)... Vegas, Nevada (PRWEB) , ... June 24, 2016 ... ... Las Vegas client, The Grove Investment Group (TGIG), has initiated cultivation and processing ... Grove, in Las Vegas and Pahrump, Nevada. , Puradigm is the manufacturer of ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... 2016   Bay Area Lyme Foundation , ... Center for Tick Borne Illness , Harvard Medical ... Hacking Medicine, University of California, Berkeley, and the ... five finalists of Lyme Innovation , the ... 100 scientists, clinicians, researchers, entrepreneurs, and investors from ...
(Date:6/24/2016)... and SAN CLEMENTE, Calif. , June 24, ... -based mobile pulmonary function testing company, is now able to perform ... developed by ndd Medical Technologies , Inc. ... in hospital-based labs.  Thanks to ndd,s EasyOne PRO ® , ARL ... can get any needed testing done in the comfort of her ...
(Date:6/24/2016)... 24, 2016  Arkis BioSciences, a leading innovator ... more durable cerebrospinal fluid treatments, today announced it ... funding is led by Innova Memphis, followed by ... private investors.  Arkis, new financing will accelerate the ... market release of its in-licensed Endexo® technology. ...
Breaking Medicine Technology: