Navigation Links
Microscopic 'astronauts' to go back in orbit
Date:3/10/2008

When space shuttle Endeavor blasts off on March 11, some tiny astronauts will piggyback onboard an experimental payload from Arizona State Universitys Biodesign Institute.

The new experiment, called Microbial Drug Resistance Virulence is part of the STS-123 space shuttle Endeavor mission. It will continue the research studies of Cheryl Nickerson, PhD, project leader and scientist in the institutes Center for Infectious Diseases and Vaccinology. Nickerson has been at the forefront on studying the risks of germs associated with spaceflight to the health and well being of the crew.

Wherever people go, germs will follow, said Nickerson, who is also an associate professor at ASUs School of Life Sciences. Last fall, she completed a multi-institutional study that showed for the first time that microbes could be affected by spaceflight, making them more infectious pathogens. The results were from a payload flown onboard space shuttle Atlantis in 2006.

Spaceflight not only altered bacterial gene expression but also increased the ability of these organisms to cause disease, or virulence, and did so in novel ways. Compared to identical bacteria that remained on earth, the space-traveling Salmonella, a leading cause of food-borne illness, had changed expression of 167 genes. In addition, bacteria that were flown in space were almost three times as likely to cause disease when compared with control bacteria grown on the ground.

Now, her research team, which includes James Wilson, PhD, Laura Quick, Richard Davis, Emily Richter, Aurelie Crabbe and Shameema Sarker, will have an extraordinarily rare opportunity to fly a repeat experiment of their NASA payload to confirm their earlier results.

We are very fortunate to get a follow up flight opportunity, because in spaceflight, you only get one shot for everything to go just right, said Nickerson. We saw unique bacterial responses in flight and these responses are giving us new information about how Salmonella causes disease. NASA is giving us the opportunity to independently replicate the virulence studies of Salmonella typhimurium from our last shuttle experiment and to do a follow-up experiment to test our hypothesis about new ways this bacteria causes disease in this unique environment.

In the new experimental wrinkle, the team will test a hypothesis that may lead to decreasing or preventing the risk for infectious diseases to astronauts. The experiment will determine if the modulation of different ion (mineral) concentrations may be used as a novel way to counteract or block the spaceflight-associated increase in the disease-causing potential that was seen in Salmonella.

In addition, the project will support three other independent investigators to determine the effect of spaceflight on the gene expression and virulence potential of other model microorganisms, including: Dave Niesel, University of Texas Medical Branch at Galveston, Streptococcus pneumoniae; Mike McGinnis, University of Texas Medical Branch at Galveston Saccharomyces cerevisiae; and Barry Pyle, Montana State University, Pseudomonas aeruginosa.

These microorganisms were chosen because they are well studied organisms that have been, or have the potential to be, isolated from the space shuttle, Mir space station, International Space Station, or its crew, or have been shown to exhibit altered virulence in response to spaceflight. These organisms are all important human pathogens that cause a significant amount of human morbidity and mortality on Earth as well.

We now have a wide variety of supportive evidence that the unique low fluid shear culture environment the bacteria encounter in space is relevant to what pathogens encounter in our body, including during Salmonella infection in the gut, and there may be a common regulatory theme governing the microbial responses, said Nickerson. But to prove that, we need to fly these common bugs together with the same hardware on the same flight so that everyone is tested under the same conditions.

The investigators believe that information gained from these studies will prove beneficial in assessing microbiological risks and options for reducing those risks during crew missions. When taken together, these studies will ultimately provide significant insights into the molecular basis of microbial virulence. Once specific molecular targets are identified, there is the potential for vaccine development and other novel strategies for prevention and treatment of disease caused by these microbes both on the ground and during spaceflight.

We are learning new things about how Salmonella is causing disease, said Nickerson. There is compelling evidence that the unique environment of spaceflight provides important insight into a variety of fundamental human health issues with tremendous potential for the commercial development of novel enabling technologies to enhance human health here on Earth," said Nickerson.


'/>"/>

Contact: Joe Caspermeyer
joseph.caspermeyer@asu.edu
480-727-0369
Arizona State University
Source:Eurekalert

Related medicine news :

1. Exercise May Help Female Astronauts Stay Strong
2. NASA Astronauts, Exercise Exhibit To Be At Houston Marathon Events
3. Wrigleys Orbit(R), Extra(R) and Eclipse(R) Sugar-Free Chewing Gums Awarded American Dental Associations Seal of Acceptance
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... June 27, 2016 , ... "FCPX editors can now reveal their ... Cut Pro X," said Christina Austin - CEO of Pixel Film Studios. , ... Pro X users can now reveal the media of their split screens with ...
(Date:6/26/2016)... , ... June 27, 2016 , ... Quality metrics are ... in many ways they remain in the eye of the beholder, according to experts ... publication of The American Journal of Managed Care. For the full issue, click ...
(Date:6/26/2016)... Orion, Clarkston, Michigan (PRWEB) , ... June 26, ... ... with respect to fertility once they have been diagnosed with endometriosis. These women ... intercourse but they also require a comprehensive approach that can help for preservation ...
(Date:6/25/2016)... TX (PRWEB) , ... June 25, 2016 , ... ... the United States, named Dr. Sesan Ogunleye, as the Medical Director of its new ... the facility Medical Director of our new Mesquite location,” said Dr. James M. Muzzarelli, ...
(Date:6/24/2016)... ... ... A recent article published June 14 on E Online details ... to state that individuals are now more comfortable seeking to undergo not only the ... and cheek reduction. The Los Angeles area medical group, Beverly Hills Physicians (BHP) notes ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... 2016 Dublin ... addition of the " Global Markets for Spectroscopy ... This report focuses on the ... review, including its applications in various applications. The report ... includes three main industries: pharmaceutical and biotechnology, food and ...
(Date:6/24/2016)... and SAN CLEMENTE, Calif. , June 24, 2016 ... mobile pulmonary function testing company, is now able to perform sophisticated ... by ndd Medical Technologies , Inc. Patients ... hospital-based labs.  Thanks to ndd,s EasyOne PRO ® , ARL patients ... get any needed testing done in the comfort of her own ...
(Date:6/24/2016)... NAMUR , Belgium , ...  (NYSE MKT: VNRX), today announced the appointment of ... Board of Directors as a Non-Executive Director, effective ... the Company,s Audit, Compensation and Nominations and Governance ... Board, Dr. Futcher will provide independent expertise and ...
Breaking Medicine Technology: