Navigation Links
Mayfly-Mimicking Sensor to Replace Proverbial Canary in the Coal Mine

Bio-inspired engineering research may improve sensors in stagnant environments

COLLEGE PARK, Md., June 19 /PRNewswire-USNewswire/ -- Security, health and safety sensors in coal mines, buildings or underground public transit areas where air or water does not readily flow may one day be improved by research on young mayflies at the University of Maryland's A. James Clark School of Engineering.

Mechanical engineers Ken Kiger and Elias Balaras and entomologist Jeffrey Shultz at the University of Maryland have identified a biological mechanism in the young mayflies that could enable sensors in stagnant environments to make air or water flow past them so they can detect harmful substances.

Young aquatic mayflies, or "nymphs," enhance their respiration using gills. They do this by creating a flow of fresh water with the help of seven pairs of nearby gill plates that flap like a Venetian blind. The flow of fresh water is generated by the plate's motion, directing water to the mayfly's gills as efficiently as possible.

"By duplicating the action of the mayfly gill plates in a tiny robotic device, we hope to create a flow of air or water to sensors in stagnant environments, so they can operate more effectively," Kiger said.

Working with the University's Department of Entomology, Kiger, an associate professor of mechanical engineering, is exploring how the mayfly's gill plates work, and how to make a robotic version. The researchers are currently duplicating and measuring the gill plate movement in a virtual computer model.

The researchers are also taking a closer look into something that scientists have known for a long time: at a sufficiently small size, an object is less affected by inertia than it is by the thickness (viscosity) of the water it is travelling through.

For example, consider a canoe in comparison to a mayfly. As it travels through the water, the canoe produces a current, which will continue to ripple through the water for some time after the canoe moves on. This is an effect of the water's inertia.

The opposite is true for the tiny mayfly nymph, which is so small that the thickness (viscosity) of the water stops such a current almost as soon as the gill plates stop. Once the mayfly grows to a certain size though, it is capable of creating an inertial effect, or ripples, of its own. Its gills respond accordingly, which is a trait the researchers hope to replicate in their sensors.

"Mayfly sizes are right at the point where issues of viscosity and inertia switch in importance," Kiger said. "Depending on whether the weight or the thickness of the water is influencing its movement, the mayfly switches the way it pumps water to its gills."

The current trend in sensor technology is to strive for smaller and more compact devices to enhance their portability and reduce power consumption. As a result of this trend, traditional technology sensors will run into the same difficulty as experienced by the mayfly as the sensors reach smaller and smaller sizes: eventually a transition will occur where inertial flow mechanisms will become ineffective. Studying how the mayfly deals with this transition can give us insight into how to better develop equivalent engineered sensors.

The next step will be to construct a tiny artificial micro-robot that can reproduce the switchable gill action of the mayfly nymph. Such a mechanism could be installed in sensors intended to detect unhealthy air in otherwise stagnant areas, such as in subway stations or mines. If a miniature set of robotic mayfly gill plates can move air over a sensor, potentially harmful substances can be detected faster - and no canaries would be harmed in the process.

This work is been supported by the National Science Foundation. Entomology graduate student Andrew Sensenig also contributed to this research.

NOTE TO EDITORS: Images are available with the online version of this release:

Related Links:

Associate Professor Ken Kiger faculty profile:

About the A. James Clark School of Engineering

The Clark School of Engineering, situated on the rolling, 1,500-acre University of Maryland campus in College Park, Md., is one of the premier engineering schools in the U.S.

The Clark School's graduate programs are collectively the fastest rising in the nation. In U.S. News & World Report's annual rating of graduate programs, the school is 17th among public and private programs nationally, 11th among public programs nationally and first among public programs in the mid-Atlantic region. The School offers 13 graduate programs and 12 undergraduate programs, including degree and certification programs tailored for working professionals.

The school is home to one of the most vibrant research programs in the country. With major emphasis in key areas such as communications and networking, nanotechnology, bioengineering, reliability engineering, project management, intelligent transportation systems and space robotics, as well as electronic packaging and smart small systems and materials, the Clark School is leading the way toward the next generations of engineering advances.

Visit the Clark School homepage at

SOURCE A. James Clark School of Engineering
Copyright©2008 PR Newswire.
All rights reserved

Related medicine news :

1. Discovery of sugar sensor in intestine could benefit diabetes
2. Biosensors to probe the metals menace
3. Leading-edge body sensor could help produce sporting champions
4. Tiny Sensor Could Spot Cancer Early
5. Area deep within the brain found to play role in sensory perception
6. Study Offers Insights Into Sensory Perceptions
7. GainSpan Unveils Wi-Fi(R) Sensor Network Solution With Years of Battery Life
8. Biometric sensors no dirtier than doorknobs, study finds
9. Scientists Spot Eyes Motion Sensors
10. Space sensors shed new light on air quality
11. Investigating causes of asthma attacks: New sensor system monitors environmental exposure
Post Your Comments:
(Date:11/30/2015)... ... November 30, 2015 , ... Holcomb – Kreithen ... plastic surgery practices in Florida, is proud to announce that Dr. Joshua Kreithen, ... giant Ethicon Inc., a Johnson & Johnson Company. , Ethicon is a global ...
(Date:11/30/2015)... EMIGSVILLE, PA (PRWEB) , ... November 30, 2015 ... ... (CCMS) software provider, has verified that their Vasont Universal Integrator (VUI) extension unites ... handle creating, editing, and managing content as a continuous process with the latest ...
(Date:11/30/2015)... Maryland (PRWEB) , ... November 30, 2015 , ... ... interactions could be of critical importance to the medical schools of the future. ... exhibited its healthcare suite at the 2015 ChangeMedEd conference in Chicago, organized by ...
(Date:11/30/2015)... ... 30, 2015 , ... Innovaacom, a leading provider of medical ... survey of educational needs for pharmacists worldwide. The poll of pharmacists in Europe, ... quality online and face-to-face education for pharmacists who are fast becoming the new ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... In 2016, expected coding changes are likely to include new codes for spine ... not easy to understand the effects of code changes in musculoskeletal, radiology and ...
Breaking Medicine News(10 mins):
(Date:11/30/2015)... , Nov. 30, 2015 NHS Supply ... 20 TrueBeam™ machines from Varian Medical Systems (NYSE: ... program to replace older machines and institute modern ... UK,s public hospitals. The order, placed in September, ... licenses for Varian,s RapidArc® and Eclipse™ software systems.    ...
(Date:11/30/2015)... , Nov. 30, 2015  Hanger, Inc. (NYSE: ... restatement of the terms of its previously announced consent ... to its $200,000,000 aggregate principal amount 7⅛% Senior Notes ... (i) the consent fees payable pursuant to the Consent ... Notes and (iii) the expiration date of the Consent ...
(Date:11/30/2015)... , Nov. 30, 2015  Precision Image ... services, is pleased to announce a dramatic expansion ... imaging services. Building on its ISO-9001:2008 certification for ... implemented comprehensive Core Lab protocols and procedures. This ... of research activities.  Their Core Lab services include ...
Breaking Medicine Technology: