Navigation Links
MIT: Stem-cell therapies for brain more complicated than thought
Date:11/27/2007

CAMBRIDGE, Mass. An MIT research teams latest finding suggests that stem cell therapies for the brain could be much more complicated than previously thought.

In a study published in the Public Library of Science (PloS) Biology on Nov. 13, MIT scientists report that adult stem cells produced in the brain are pre-programmed to make only certain kinds of connectionsmaking it impossible for a neural stem cell originating in the brain to be transplanted to the spinal cord, for instance, to take over functions for damaged cells.

Some researchers hope to use adult stem cells produced in the brain to replace neurons lost to damage and diseases such as Alzheimers. The new study calls this into question.

It is wishful thinking to hope that adult stem cells will be able to modify themselves so that they can become other types of neurons lost to injury or disease, said Carlos E. Lois, assistant professor of neuroscience in MITs Picower Institute for Leaning and Memory.

In developing embryos, stem cells give rise to all the different types of cells that make up the body--skin, muscle, nerve, brain, blood and more. Some of these stem cells persist in adults and give rise to new skin cells, stomach lining cells, etc. The idea behind stem-cell therapy is to use these cells to repair tissue or organs ravaged by disease.

To realize this potential, the stem cells have to be instructed to become liver cells, heart cells or neurons. The MIT study, which looked only at adult neural stem cells, suggests it will be necessary to learn how to program any kind of stem cellembryonic, adult or those derived through other meansto produce specific types of functioning neurons. Without this special set of instructions, a young neuron will only connect with the partners for which it was pre-programmed.

The adult brain harbors its own population of stem cells that spawn new neurons for life. The MIT study shows that a neural stem cell is irreversibly committed to produce only one type of neuron with a pre-set pattern of connections. This means that a given neuronal stem cell can have only limited use in replacement therapy.

A stem cell that produces neurons that could be useful to replace neurons in the cerebral cortex (the type of neurons lost in Alzheimer's disease) will be most likely useless to replace neurons lost in the spinal cord, said Lois, who also holds an appointment in MITs Department of Brain and Cognitive Sciences. Moreover, because there are many different types of neurons in the cerebral cortex, it is likely that we will have to figure out how to program stem cells to become many different types of neurons, each of them with a different set of pre-specified connections.

In the stem cell field, it is generally thought that the main limitation to achieve brain repair is simply for the new neurons to reach a given brain region and to ensure their survival. Once there, it has been assumed that stem cells will know what to do and will become the type of neuron that is missing. It seems that is not the case at all. Our experiments indicate that things are much more complicated, Lois said.

Lois and colleagues from MITs departments of Brain and Cognitive Sciences and Biology found that the stem cells give rise to neurons that become a very specific neuronal type that is already pre-specified to make a very defined set of connections and not others.

Even if the stem cells are transplanted to other parts of the brain, they do not change the type of connections they are programmed to make.

This suggests that we will have to know much more about the different types of neuronal stem cells, and to identify the characteristic features of their progeny, Lois said. We may need to have access to many different types of tailored stem cells that give rise to many different types of neurons with specific connections. In addition, we may need a combination of several of these tailored stem cells to eventually be able to replace the different types of neurons lost in a given brain region.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related medicine news :

1. New Non-Surgical Stem-Cell Procedure Relieves Degenerative Joint Disease
2. Study expected to boost research for hearing and balance therapies
3. Stop-Smoking Therapies Have Benefits, Risks for Pregnant Women
4. New Report Provides Insight Into Developments in the Market for Anxiety and Depression Therapies
5. Effectiveness of most PTSD therapies is uncertain
6. Clinical studies in the pipeline: the therapies of tomorrow in trials today
7. A fresh look at existing therapies: Researchers explore ways to teach approved drugs new tricks
8. Targets on the horizon: Emerging therapies and novel targets
9. Comprehensive Review of Cancer Immnunotherapies Published By CEL-SCI
10. Video and Photo: Tasigna(R) Receives US Approval Providing New Hope to Chronic Myeloid Leukemia Patients With Resistance or Intolerance to Existing Therapies
11. Mayo researchers: complementary therapies help patients recover after heart surgery
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2016)... , ... February 08, 2016 , ... ... enrichment program serving the greater Venice, FL area, has initiated a fundraiser for ... a car accident just four days after Christmas. To support this beautiful child ...
(Date:2/8/2016)... ... February 08, 2016 , ... Remember the old saying ... , According to Perry A~, author of “Calcium Bentonite Clay” the health benefits of ... in balancing and detoxifying the body. , A former motivational speaker, Perry A~ has ...
(Date:2/8/2016)... ... ... Discover the Rocky Mountain region’s longest running and impressive garden and home show where ... see the most incredible gardens and home improvement experts that attend this amazing show. ... - 700 14th St. Denver CO, is an exciting event that Performance Mobility has ...
(Date:2/8/2016)... KS (PRWEB) , ... February 08, 2016 , ... TopConsumerReviews.com ... leader in Mole removal products. , Moles are derived from a cluster of melanin ... in all the wrong places and create a lifetime of embarrassment. Historically, mole ...
(Date:2/8/2016)... ... February 08, 2016 , ... The schedule is now online ... AutismOne 2016 Conference, which is being held May 25-29 at the Loews Chicago O’Hare ... helpful interventions and causes of chronic illness in children. , Very recent articles have ...
Breaking Medicine News(10 mins):
(Date:2/8/2016)... Feb. 8, 2016 Velano Vascular, a medical ... hospitalized patients and their practitioners, announced today that the ... Velano will use the proceeds from this financing, an ... in January 2015, to support the development and commercialization ... pediatric populations. Philadelphia , ...
(Date:2/8/2016)... CARLSBAD, Calif. , Feb. 8, 2016  HemaFlo Therapeutics, ... Office (USPTO) has issued US Patent Number 9,119,880 covering the ... Dale Peterson , PhD, HemaFlo,s founder, said, "We ... technology." --> Dale Peterson , PhD, HemaFlo,s ... such a powerful technology." --> Dale ...
(Date:2/8/2016)... , Feb. 8, 2016  Astellas Pharma Inc. President and ... promotion of James Robinson as president, Americas Operations, ... in North and South America , effective ... US, representing the commercial organization in the United ... Masao Yoshida , who is retiring in ...
Breaking Medicine Technology: