Navigation Links
Lab-made skin cells will aid transplantation, cancer, drug discovery research
Date:10/26/2011

PHILADELPHIA - The pigmented cells called melanocytes aren't just for making freckles and tans. Melanocytes absorb ultraviolet light, protecting the skin from the harmful effects of the sun. They also are the cells that go haywire in melanoma, as well as in more common conditions as vitiligo and albinism.

Naturally, researchers would love to study melanocytes in the laboratory. There's just one problem -- melanocytes from adult skin don't grow very well in the lab. Now, researchers at the Perelman School of Medicine at the University of Pennsylvania have found a way to create melanocytes from mouse tail cells using embryonic stem cell-like intermediates called inducible pluripotent (iPS) cells.

Xiaowei Xu, MD, PhD, associate professor of Pathology and Laboratory Medicine, is senior author the study, which appears online in the Journal of Investigative Dermatology ahead of the December print issue. Xu and his team converted mouse tail-tip fibroblasts into iPS cells using four genes, which were first described by Shinya Yamanaka in 2006, producing pluripotent cells similar to embryonic stem cells, but without the concomitant ethical issues.

According to Xu, these lab-made melanocytes promise benefits in areas from tissue transplantation to drug discovery. "This method really has lots of clinical implications," says Xu. "We are not quite there yet, but this is an early step."

For example, by collecting a tissue sample from patients with, say, vitiligo, and converting it to iPS cells, researchers can study what goes wrong as those cells differentiate into melanocytes. Or, they can study the development and possible treatment of melanoma.

Xu's new study is the first to report creating melanocytes from iPS cells in mice, and builds on his previous work. Xu's lab was involved in the first study to work out the conditions for differentiating human embryonic stem cells to melanocytes in 2006. Earlier this year, a Japanese team became the first to differentiate human iPS cells to melanocytes.

Transformation of Cells

Initially, the researchers from Xu's lab introduced the four Yamanaka genes into mouse cells by infecting the cells with transgenic viruses. Between 0.5% to 0.8% of fibroblasts treated in this way converted to iPS cells in Xu's lab a rate that is consistent with other researchers' findings, he says. But his team also could achieve the same result (albeit at lower efficiency, 0.01%) using a non-viral "transposon" called piggyBac. Finally, the researchers showed they could differentiate both iPS cell populations into melanocytes in about two weeks by feeding the cells a defined cocktail of growth factors.

According to Xu, the growth factor cocktail used in the present study differs somewhat from the formulation his lab worked out several years ago for human embryonic stem cells. Among other things, it works in the absence of the growth factor Wnt3a and the carcinogen TPA, both of which are required for human melanocyte differentiation. TPA, especially, could be problematic for possible cell-based therapies, in that it is tumorigenic. It remains to be seen, however, whether human iPS cells can also be differentiated in the absence of this compound, Xu notes.

His study's implementation of piggyBac in creating the iPS cells (a technique first published by Canadian researchers in 2009) could possibly extend the technique's clinical value, he adds. Unlike viruses, which insert their genetic cargo into the host genome, thereby raising concerns of genetic alterations in the infected cells, piggyBac delivers genes without permanently altering the host genome.


'/>"/>
Contact: Karen Kreeger
karen.kreeger@uphs.upenn.edu
215-349-5658
University of Pennsylvania School of Medicine
Source:Eurekalert  

Related medicine news :

1. You are what you eat: Low fat diet with fish oil slowed growth of human prostate cancer cells
2. A new mechanism inhibiting the spread and growth of cancer found in motile cells
3. Turning up the heat to kill cancer cells: The Lance Armstrong effect
4. Steps towards the use of adult stem cells for gene therapy
5. Precision with stem cells a step forward for treating MS, other diseases
6. Stem cells from cord blood could help repair damaged heart muscle
7. Why many cells are better than one
8. Stem cells, signaling pathways identified in lung repair
9. Bone marrow cells migrate to tumors and can slow their growth
10. Mine-hunting software helping doctors to identify rare cells in human cancer
11. How cells sense nutrients and fuel cancer cell growth
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Lab-made skin cells will aid transplantation, cancer, drug discovery research
(Date:6/25/2016)... D.C. (PRWEB) , ... June 25, 2016 , ... ... discuss health policy issues and applications at AcademyHealth’s Annual Research Meeting June 26-28, ... their work on several important health care topics including advance care planning, healthcare ...
(Date:6/25/2016)... Lewisville, TX (PRWEB) , ... June 25, 2016 , ... ... in the United States, named Dr. Sesan Ogunleye, as the Medical Director of its ... be the facility Medical Director of our new Mesquite location,” said Dr. James M. ...
(Date:6/25/2016)... Canada (PRWEB) , ... June 25, 2016 , ... Conventional ... pursuit of success. In terms of the latter, setting the bar too high can ... risk more than just slow progress toward their goal. , Research from ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Marcy was in a crisis. Her son ... lash out at his family verbally and physically. , “When something upset him, he couldn’t ... would use it. He would throw rocks at my other children and say he was ...
(Date:6/24/2016)... ... June 24, 2016 , ... Comfort Keepers® of San Diego, ... and the Road To Recovery® program to drive cancer patients to and from their ... to ensure the highest quality of life and ongoing independence. Getting to and ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... Tenn. , June 24, 2016  Arkis ... providing less invasive and more durable cerebrospinal fluid ... in funding.  The Series-A funding is led by ... Lighthouse Fund, and other private investors.  Arkis, new ... neurosurgical instrumentation and the market release of its ...
(Date:6/23/2016)... Research and Markets has announced the addition ... Chemical (Sugar, Petrochemical, Glycerin), Inorganic Chemical), Functionality (Filler, Binder, ... Forecast to 2021" report to their offering. ... excipients market is projected to reach USD 8.1 Billion ... forecast period 2016 to 2021. The ...
(Date:6/23/2016)... , June 23, 2016 ... CAPR ), a biotechnology company focused on the ... announced that patient enrollment in its ongoing randomized ... has exceeded 50% of its 24-patient target. Capricor ... the third quarter of 2016, and to report ...
Breaking Medicine Technology: