Navigation Links
Inflammatory protein converts glioblastoma cells into most aggressive version

HOUSTON -- A prominent protein activated by inflammation is the key instigator that converts glioblastoma multiforme cells to their most aggressive, untreatable form and promotes resistance to radiation therapy, an international team lead by researchers at The University of Texas MD Anderson Cancer Center reported online today in the journal Cancer Cell.

The discovery by scientists and physicians points to new ways to increase radiation effectiveness and potentially block or reverse progression of glioblastoma multiforme, the most common and lethal form of brain tumor.

"We know that the mesenchymal (MES) subgroup of glioblastoma cells is the most aggressive subgroup clinically," said co-senior author Ken Aldape, M.D., chair and professor of Pathology and Kenneth D. Muller Professor in Tumor Genetics. "This paper shows that the NF-kB pathway causes cells to change to that MES subgroup."

This conversion leads to radiation resistance.

"The pathway we identified serves as an escape mechanism for tumors," said lead author Krishna Bhat, Ph.D., assistant professor of Pathology. "In newly diagnosed patients, even before treatment, these cells already are poised to meet radiation therapy challenges."

NF-κB-driven cell change starts outside the tumor

NF-κB activation is stimulated by inflammation, which occurs in the tumor cell's microenvironment.

"The shift of tumor cells to a MES type, characterized gene expression associated with invasion and new blood vessel formation, leads to radiation resistance," said co-senior author Erik Sulman, M.D., Ph.D., assistant professor of Radiation Oncology. "This suggests blocking the inflammatory response to make tumors more sensitive to standard radiation treatment may improve outcomes for patients."

Standard care for glioblastoma is surgery, followed by radiation and chemotherapy and then treatment with temozolomide. An estimated 23,270 people will receive a glioblastoma diagnosis in 2013 and about 14,000 people will die of the disease. Median survival is about one year.

Cell line, mouse model show something missing

"No one really knows how glioblastoma progresses from its early stages because 90-95 percent of cases are diagnosed without prior history of a lower grade glioma," Bhat said. Of these about 50 percent belong to the MES subgroup. A previous study had shown that glioblastomas with a proneural (PN) type, have a much better prognosis. But these less-aggressive tumors tend to recur as the aggressive MES subtype after treatment."

Research at MD Anderson and other institutions identified the two distinct cell types based on genes expressed by each. "We haven't known what makes a cell evolve into the MES subtype," Bhat said.

Bhat took cells from 41 human glioblastoma samples and placed them in cell cultures. Of these, 33 developed into neurospheres, cells that take on stem-cell like characteristics.

Microarray analysis of gene expression in the 17 fastest -expanding cell cultures divided them into two distinct groups: one cluster similar to the MES subtype and the other the PN subtype.

They analyzed expression of four genes commonly expressed by each subtype to see how the cultured cells matched up to their parental tumors.

Cue the surprise

All but two of the cell lines (70 percent) that originated from MES tumors lost their MES characteristics and acquired a PN signature. These results do not match the human experience, Bhat noted. Glioblastoma cells don't retreat from an aggressive to less aggressive state.

Either something in the cell culture system favored enrichment of the PN state, or most glioblastoma neurospheres exist in the less-aggressive PN state, and something in the tumor microenvironment triggers their reversible differentiation into the MES state.

Placing the PN cells cultured from MES tumors in mice did not restore those cells to the parent tumor's more aggressive type.

Different responses to radiation treatment

The researchers implanted glioblastoma sphere culture grafts from MES and PN types in mice and then treated them with radiation.

Those with the PN type had increased survival after treatment compared to controls and had a dramatic accumulation of cells (48 to 78 percent) stuck in a specific phase of the cell cycle caused by irradiation, which lead to massive cell death.

Irradiating MES tumors produced no or minimal survival advantage and the percentages of cells arrested by treatment was reduced to 19-25 percent. The MES cells also showed an enhanced ability to repair damage caused by irradiation.

The Cancer Genome Atlas project for glioblastoma had previously found that genes in the TNFα receptor family and the NF-κB pathway are enriched in MES subclass tumors that also express high levels of the surface receptor CD44.

This team found the exact same pathway had been turned on in the MES cells in their study.

Subsequent experiments found:

  • Treating PN cells with TNFα caused a dramatic increase in CD44 expression. This effect could be reversed by impeding NF-κB.
  • Pretreating PN cells with TNF-alpha before radiation treatment greatly reduced cell damage.
  • NF-κB controls three main transcription factors known to produce the MES cell signature and forces conversion to MES by inducing those factors.

MES cells, CD44 levels, NF-kB activation predict human radiation response

In a cohort of newly diagnosed glioblastoma patients, the team found that those in the MES subgroup, with high levels of CD44 and activated NF-κB had poorer response to radiation and reduced survival.

A separate analysis of PN to MES transition in human tumors showed that regions with higher MES signatures had greater invasion by immune cells called macrophages /microglia elements of the glioblastoma microenvironment than did PN areas.

"We know we have to control inflammation in this disease," Bhat said. NF-κB is known to play an important role in promoting inflammation in multiple cell types.

"Surprisingly we found that activation of NF-κB was prevalent in the MES subtype even before surgery and radiation, which in turn can cause inflammation and further activation of NF-κB."

Bhat is investigating downstream targets of NF-κB that promote radiation resistance in glioblastoma.

Inhibitors of NF-κB are in clinical trials for inflammatory and autoimmune diseases, Aldape noted.

"One can imagine a clinical trial in which patients are evaluated for MES status and given an NF-κB inhibitor if they have the MES subtype. You can look at improving radiation response, and also whether you can reverse the MES subtype," Aldape said.


Contact: Scott Merville
University of Texas M. D. Anderson Cancer Center

Related medicine news :

1. Thomas Jefferson University Kimmel Cancer Center: Researchers Find New Clues to Treat Rare and Aggressive Inflammatory Breast Cancer
2. Study links cardiac hormone-related inflammatory pathway with tumor growth
3. Study finds dramatic increase in hospitalization of US children with inflammatory bowel disease
4. Revitol Rosacea Now Comes with Anti-Inflammatory Ingredients to Remove Redness and Flushing
5. Biomarkers discovered for inflammatory bowel disease
6. Mayo Clinic: Inflammatory bowel disease raises risk of melanoma
7. Inflammatory bowel disease detection enhanced with PET/CT
8. Revitol Rosacea Now Comes with Anti-Inflammatory Ingredients to Remove Redness and Flushing
9. Advances in Inflammatory Bowel Disease -- whats new, whats next
10. Did evolution give us inflammatory disease?
11. Manchester leads new international study investigating Inflammatory Bowl Disease
Post Your Comments:
(Date:11/27/2015)... ... 27, 2015 , ... The men and women on this ... in the country. They have overseen financial turnarounds, shown commitment to their community ... industry as a whole through their advocacy and professional efforts. , Becker's Hospital ...
(Date:11/27/2015)... ... November 27, 2015 , ... Indosoft Inc., developer ... incorporation of Asterisk 11 LTS (Long Term Support) into its Q-Suite 5.10 product ... Q-Suite 5.10 up-to-date with a version of Asterisk that will receive not only ...
(Date:11/26/2015)... (PRWEB) , ... November 26, 2015 , ... ... a real-time eReferral system for diagnostic imaging in the Waterloo region. Using the ... and Nuclear Medicine tests directly from their electronic medical record (EMR) without the ...
(Date:11/26/2015)... ... November 26, 2015 , ... Jobs in hospital medical laboratories and ... offered by healthcare staffing agency Aureus Medical Group . These fields, ... 2015 among those searching for healthcare jobs through the company’s website, ...
(Date:11/26/2015)... CA (PRWEB) , ... November 26, 2015 , ... ... a new set of retro-fused, self-animating trailer titles with ProTrailer: Vintage. This newly ... options. These classically-influenced trailer titles work with any font, giving users limitless opportunities ...
Breaking Medicine News(10 mins):
(Date:11/26/2015)... Países Bajos, November 26, 2015 ... fotodinámica de Bremachlorin para el cáncer avanzado.   ... con la terapia fotodinámica de Bremachlorin para el cáncer ... enfoque combina la inmunoterapia con la terapia fotodinámica de ... Clinical Cancer Research . --> Clinical Cancer ...
(Date:11/26/2015)... Research and Markets ( ) has announced the addition ... 2019 - Rise in Cardiac Disorders and Growing Awareness among ... offering. Boston scientific and ... and others. --> The market is dominated ... scientific and others. Asia ...
(Date:11/26/2015)... November 26, 2015 ... the "2016 Future Horizons and Growth ... Testing Market: Supplier Shares, Country Segment Forecasts, ... their offering. --> ) ... "2016 Future Horizons and Growth Strategies in ...
Breaking Medicine Technology: