Navigation Links
Impairments in language development can be detected in infants as young as 3 months

Uncover how the brains of infants distinguish differences in sounds and it may become possible to correct language problems even before children start to speak, sparing them the difficulties that come from struggling with language.

New studies conducted by Professor of Neuroscience April Benasich and her Infancy Studies Laboratory at Rutgers University in Newark are revealing new and exciting clues about how infant brains begin to acquire language and paving the way for correcting language difficulties at a time when the brain is most able to change.

Benasich and her lab were the first to determine that how efficiently a baby processes differences between rapidly occurring sounds is the best predictor of future language problems. Using methods developed by Benasich and her lab, it can be determined as early as three to six months whether a baby will struggle with language development.

Benasichs research is now focused on uncovering in specific detail how the developing brain processes and distinguishes acoustic differences that arrive in rapid succession. The ability to differentiate those sounds, such as the difference between ba and da, is critically important because decoding language requires us to process tiny auditory differences occurring as quickly as 40 milliseconds. During the first months of life, the babys developing brain also is involved in constructing an acoustic map of the sounds of his or her native language. That map allows the baby to efficiently acquire language. Apparently, however, in some infants the process seems to go awry.

About 5 to 10 percent of all children beginning school are estimated to have language-learning impairments (LLI) leading to reading, speaking and comprehension problems, according to Benasich. In families with a history of LLI, 40 to 50 percent of children are likely to have a similar problem. Many of these children go on to develop dyslexia.

Using several novel methods, including dense array EEG/ERP recordings, Benasich and her lab are able to analyze EEG, ERPs and the proportion of gamma power in infant brains. The dense sensor array allows the researchers to gently measure a full range of brain activity. Those measurements are obtained by placing a soft bonnet of sensors, resembling a hairnet with lots of little sponges, on a babys head and then having the infant listen to different series of rapid tone sequences.

We are finding that children who have difficulty processing rapid auditory input are not just showing a simple maturational lag, but are actually processing incoming acoustic information differently, says Benasich.

Specifically, the research shows that babies who struggle with rapid auditory processing appear to be using different brain areas (as shown by neural patterns) and perhaps different analysis strategies to accomplish that task than children who do not have such difficulties. Included among their initial findings, the researchers have found less left hemisphere activity in the brains of children who struggle with rapid auditory processing as compared with matched control children. By pinpointing the exact differences in how the brain handles incoming acoustic information, it may become possible to guide the brains of babies at risk of developing language problems to work more efficiently before the children even begin to speak.

We can predict with about 90 percent accuracy what a babys language capabilities will be just by their response to tones, says Benasich. Our hope now is that we will be able to gently guide the brains of infants who are at the highest risk for language learning impairments to be more efficient processors so they can avoid the difficulties that result from struggling with language.

To shed additional light on how inefficiencies in rapid auditory processing might be corrected, Benasich and her team have developed a Magnetic Resonance Imaging (MRI) protocol for scanning naturally sleeping healthy babies. This technique will allow better localization of active brain areas. To solve the challenge of imaging the brains of young children who typically are unable to lie still for extended periods in a scanner, Benasichs team conducts the scans in the evening and asks the parents to go through their childs normal bedtime routine, such as reading their infant a story, nursing them, rocking and snuggling. Once the child is asleep, headphones providing a steady stream of lullabies and an acoustic foam bonnet are placed on the babys head to reduce the sound of the MRI.

Our goal is not only to develop training techniques to correct rapid auditory processing problems, but to identify the period during infant development when the brain is most plastic, or most able to change through learning, explains Benasich.


Contact: Helen Paxton
Rutgers University

Related medicine news :

1. Physical Therapist Intervention for Balance Impairments May Help Reduce Risk of Falling
2. Report Shows Millions May Be Driving with Uncorrected Visual Impairments
3. Potential new approach to treat cognitive impairments in schizophrenia
4. Insight into the struggles of children with language impairments
5. Flip-chart book translates complicated medical procedures into easy-to-understand language
6. Gender differences in language appear biological
7. Child obesity seen as fueled by Spanish language tv ads
8. Learning Disabilities May Presage Later Language Problems
9. Language centers revealed, brain surgery refined with new mapping
10. ScienceDirect to host French-language journals from Elsevier Masson
11. The development of a language in space -- Israeli Sign Language
Post Your Comments:
(Date:11/25/2015)... ... November 25, 2015 , ... For the first time, Vitalalert ... Organizations, One Beat ” campaign. The partnership between the two groups began in 2014 ... MAP International’s cause. , MAP International was founded in 1954 and is an international ...
(Date:11/25/2015)... ... ... On November 25, 2015, officials of Narconon Arrowhead , the drug rehabilitation ... new cutting edge recovery program that has been 50 years in the making. ... with the purpose to free addicts from the symptoms and negative behaviors of addiction. ...
(Date:11/25/2015)... ... ... Smiles by Stevens is pleased to announce the addition of Botox® for ... aware of the benefits of Botox® in the treatment of moderate facial wrinkling, few ... and pain as a result of Jaw Tension, TMJ (temporo-mandibular joint) disorder, and Bruxism ...
(Date:11/25/2015)... ... November 25, 2015 , ... In an ongoing Clinical Study conducted by an ... IL, UV Angel is evaluating the efficacy of its product and its disinfection protocol. ... 30 beds) from May 2014 through October 2015 at a 360-bed, acute-care, academic medical ...
(Date:11/25/2015)... Spring, Md (PRWEB) , ... November 25, 2015 ... ... Pulmonary Hypertension Association (PHA) announces the nation’s Periwinkle Pioneers, individuals and groups responsible ... history of this disease. The Periwinkle Pioneers, nominated by the public, will receive ...
Breaking Medicine News(10 mins):
(Date:11/25/2015)... 2015 Kitov Pharma ceuticals ... a biopharmaceutical company focused on the development of therapeutic ... today announced the closing of its previously announced underwritten ... ), each representing 20 ordinary shares of the Company, ... ADSs and warrants were issued in a fixed combination ...
(Date:11/25/2015)...  Today AVACEN Medical announced the issue of United States patent No. ... ". This patent shields the company,s AVACEN 100 dry heat therapy medical device and specific methods ... Photo - ... ... ...
(Date:11/25/2015)... , Nov. 25, 2015 USP 800 ... drug preparations (e.g. pharmacists, pharmacy technicians, nurses, physicians, ... technicians). The chapter also covers all entities which ... pharmacies, hospitals, other healthcare institutions, patient treatment clinics, ... --> --> What is ...
Breaking Medicine Technology: