Navigation Links
Impairments in language development can be detected in infants as young as 3 months
Date:4/10/2008

Uncover how the brains of infants distinguish differences in sounds and it may become possible to correct language problems even before children start to speak, sparing them the difficulties that come from struggling with language.

New studies conducted by Professor of Neuroscience April Benasich and her Infancy Studies Laboratory at Rutgers University in Newark are revealing new and exciting clues about how infant brains begin to acquire language and paving the way for correcting language difficulties at a time when the brain is most able to change.

Benasich and her lab were the first to determine that how efficiently a baby processes differences between rapidly occurring sounds is the best predictor of future language problems. Using methods developed by Benasich and her lab, it can be determined as early as three to six months whether a baby will struggle with language development.

Benasichs research is now focused on uncovering in specific detail how the developing brain processes and distinguishes acoustic differences that arrive in rapid succession. The ability to differentiate those sounds, such as the difference between ba and da, is critically important because decoding language requires us to process tiny auditory differences occurring as quickly as 40 milliseconds. During the first months of life, the babys developing brain also is involved in constructing an acoustic map of the sounds of his or her native language. That map allows the baby to efficiently acquire language. Apparently, however, in some infants the process seems to go awry.

About 5 to 10 percent of all children beginning school are estimated to have language-learning impairments (LLI) leading to reading, speaking and comprehension problems, according to Benasich. In families with a history of LLI, 40 to 50 percent of children are likely to have a similar problem. Many of these children go on to develop dyslexia.

Using several novel methods, including dense array EEG/ERP recordings, Benasich and her lab are able to analyze EEG, ERPs and the proportion of gamma power in infant brains. The dense sensor array allows the researchers to gently measure a full range of brain activity. Those measurements are obtained by placing a soft bonnet of sensors, resembling a hairnet with lots of little sponges, on a babys head and then having the infant listen to different series of rapid tone sequences.

We are finding that children who have difficulty processing rapid auditory input are not just showing a simple maturational lag, but are actually processing incoming acoustic information differently, says Benasich.

Specifically, the research shows that babies who struggle with rapid auditory processing appear to be using different brain areas (as shown by neural patterns) and perhaps different analysis strategies to accomplish that task than children who do not have such difficulties. Included among their initial findings, the researchers have found less left hemisphere activity in the brains of children who struggle with rapid auditory processing as compared with matched control children. By pinpointing the exact differences in how the brain handles incoming acoustic information, it may become possible to guide the brains of babies at risk of developing language problems to work more efficiently before the children even begin to speak.

We can predict with about 90 percent accuracy what a babys language capabilities will be just by their response to tones, says Benasich. Our hope now is that we will be able to gently guide the brains of infants who are at the highest risk for language learning impairments to be more efficient processors so they can avoid the difficulties that result from struggling with language.

To shed additional light on how inefficiencies in rapid auditory processing might be corrected, Benasich and her team have developed a Magnetic Resonance Imaging (MRI) protocol for scanning naturally sleeping healthy babies. This technique will allow better localization of active brain areas. To solve the challenge of imaging the brains of young children who typically are unable to lie still for extended periods in a scanner, Benasichs team conducts the scans in the evening and asks the parents to go through their childs normal bedtime routine, such as reading their infant a story, nursing them, rocking and snuggling. Once the child is asleep, headphones providing a steady stream of lullabies and an acoustic foam bonnet are placed on the babys head to reduce the sound of the MRI.

Our goal is not only to develop training techniques to correct rapid auditory processing problems, but to identify the period during infant development when the brain is most plastic, or most able to change through learning, explains Benasich.


'/>"/>

Contact: Helen Paxton
paxton@andromeda.rutgers.edu
973-353-5262
Rutgers University
Source:Eurekalert

Related medicine news :

1. Physical Therapist Intervention for Balance Impairments May Help Reduce Risk of Falling
2. Report Shows Millions May Be Driving with Uncorrected Visual Impairments
3. Potential new approach to treat cognitive impairments in schizophrenia
4. Insight into the struggles of children with language impairments
5. Flip-chart book translates complicated medical procedures into easy-to-understand language
6. Gender differences in language appear biological
7. Child obesity seen as fueled by Spanish language tv ads
8. Learning Disabilities May Presage Later Language Problems
9. Language centers revealed, brain surgery refined with new mapping
10. ScienceDirect to host French-language journals from Elsevier Masson
11. The development of a language in space -- Israeli Sign Language
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/5/2016)... ... 2016 , ... Researchers at Johns Hopkins All Children’s Hospital want to learn ... the course of three years, researchers will study concussions and changes in brain function ... with special sensors, will track the location and force of the hit. The sensors ...
(Date:12/5/2016)... ... 05, 2016 , ... “Epilepsy Awareness,” which can be found ... a conversation about epilepsy, bearing down on the social stigma and lack of ... with epilepsy within their lifetime. With such a large percentage of people affected, ...
(Date:12/5/2016)... (PRWEB) , ... December 05, 2016 , ... ... Keynote speaker for the 21st Annual International Congress on Hematologic Malignancies®: Focus on ... PER® president, Phil Talamo said, “We are honored to have Amy E. Herman ...
(Date:12/5/2016)... ... December 05, 2016 , ... ... geographic lines. The goal of Castlewood Treatment Centers has always been to promote ... to as many people as possible. In that spirit, Castlewood has announced two ...
(Date:12/5/2016)... , ... December 05, 2016 , ... Dr. Barry M. ... Cosmetic Plastic Surgery, who recently participated in the 36th Annual Cutting Edge Aesthetic Symposium ... the newest techniques for getting that perfect, yet natural-looking, nose. Dr. Weintraub, who is ...
Breaking Medicine News(10 mins):
(Date:12/5/2016)... TAIPEI, Taiwan , Dec. 5, 2016 ... alfa-2b showed non-inferiority to hydroxyurea (HU) in Complete Hematologic Response ... and tolerability profile of ropeginterferon alfa-2b versus HU ... ongoing long-term follow-up trial CONTINUATION-PV to obtain European marketing authorization ... present this data to the FDA as it seeks approval ...
(Date:12/4/2016)... SAN DIEGO , Dec. 3, 2016 Johnson ... filed on behalf of purchasers of Zimmer Biomet Holdings, Inc. ... September 7, 2016 through October 31, 2016 (the "Class Period"). ... It designs, manufactures, and markets orthopaedic reconstructive products, such as ... ...
(Date:12/4/2016)... 3, 2016   Pairnomix, LLC, a genetic research ... recognized by the White House, today announced that findings from ... identification of candidate therapies for a patient with epileptic encephalopathy ... were presented at the 70 th Annual Meeting of ... TX , December 2-6, 2016.  Pairnomix, unique ...
Breaking Medicine Technology: