Navigation Links
Human Heart Can Make New Cells
Date:4/2/2009

Discovery could lead to ways of regrowing damaged cardiac tissue, experts say,,,,

THURSDAY, April 2 (HealthDay News) -- Solving a longstanding mystery, scientists have found that the human heart continues to generate new cardiac cells throughout the life span, although the rate of new cell production slows with age.

The finding, published in the April 3 issue of Science, could open a new path for the treatment of heart diseases such as heart failure and heart attack, experts say.

"We find that the beating cells in the heart, cardiomyocytes, are renewed," said lead researcher Dr. Jonas Frisen, a professor of stem cell research at the Karolinska Institute in Stockholm, Sweden. "It has previously not been known whether we were limited to the cardiomyocytes we are born with or if they could be renewed," he said.

The process of renewing these cells changes over time, Frisen added. In a 20-year-old, about 1 percent of cardiomyocytes are exchanged each year, but the turnover rate decreases with age to only 0.45 percent by age 75.

"If we can understand how the generation of new cardiomyocytes is regulated, it may be potentially be possible to develop pharmaceuticals that promote this process to stimulate regeneration after, for example, a heart attack," Frisen said.

That could lead to treatment that helps restore damaged hearts.

"A lot of people suffer from chronic heart failure," noted co-author Dr. Ratan Bhardwaj, also from the Karolinska Institute. "Chronic heart failure arises from heart cells dying," he said.

With this finding, scientists are "opening the door to potential therapies to having ourselves heal ourselves," Bhardwaj said. "Maybe one could devise a pharmaceutical agent that would make heart cells make new and more cells to overcome the problem they are facing."

But roadblocks remain. According to Bhardwaj, scientists do not yet know how to increase heart cell production to a rate that would replace cells faster than they are dying off, especially in older patients with heart failure. In addition, the number of new cells the heart produces was estimated using healthy hearts -- whether the rate of cell turnover in diseased hearts is the same remains unknown.

To find out the rate at which new heart cells are generated, the researchers used carbon-14 dating to estimate exactly when in the life span the cells were created. They found that less than 50 percent of cardiomyocytes are exchanged during a normal human life span.

Levels of carbon-14 can be used to date the cells, because levels of this isotope rose during the era of above-ground nuclear bomb tests, back in the 1950s. This also increased the levels of carbon-14 in the cells of all people and animals on Earth at the time. However, the levels of carbon-14 in our DNA has been dropping since above-ground testing was banned. So, pinpointing the levels of carbon-14 at various times in particular cells let the researchers date when each cell was born.

Dr. Gregg C. Fonarow, a professor of cardiology at the University of California, Los Angeles, said that for any cell-replacement therapy to be clinically useful, the rate of cell regeneration would have to dramatically increase.

"It was previously believed that the cardiomyocytes are terminally differentiated and cannot regenerate when the heart is damaged," Fonarow said. "Recent studies have suggested that cardiomyocytes can regenerate, but there has been substantial controversy as to the rate of cellular turnover," he said.

This new study, using carbon dating, suggests that cardiomyocyte regeneration can occur, but to a very limited degree, Fonarow said.

"Whether there will be medical or gene therapies that can safely and effectively allow for higher rates of myocardial regeneration will require further study," he said.

In a related development, scientists reporting in the April 3 issue of Cell Stem Cell found that they could use stem cells to promote the creation of new blood vessels in mouse hearts.

The team from Ludwig-Maximilians University, Munich, used a dual therapy. On one side, they slowed the degradation of SDF-1, the main chemical that guides stem cells to damaged heart tissue. They also treated the mouse hearts with granulocyte colony stimulating factor, a drug that mobilizes stem cells from various places such as the bone marrow and blood. This two-pronged approach led to the generation of new blood vessels and improved cardiac function following a heart attack, the team said.

More information

For more on heart failure, visit the American Heart Association.



SOURCES: Jonas Frisen, M.D., Ph.D., professor, stem cell research, Karolinska Institute, Stockholm, Sweden; Ratan Bhardwaj, M.D., Ph.D., Karolinska Institute, Stockholm, Sweden; Gregg C. Fonarow, M.D., professor, cardiology, University of California, Los Angeles; April 2, 2009, news release, Cell Press; April 3, 2009, Science


'/>"/>
Copyright©2009 ScoutNews,LLC.
All rights reserved  

Related medicine news :

1. Gen-Probe, Roche Prevail in Arbitration With Digene Concerning Human Papillomavirus Agreement
2. Video: U.S. Department of Health & Human Services and Ad Council Launch National Lupus Awareness Campaign
3. Human Pheromone Sciences Announces Fourth Quarter and Full Year Results
4. Federal funding gap cited for research on human health impacts due to climate change
5. Human papillomavirus genotype distribution in New Mexico cervical cancers
6. Human Brain Works Between Order and Chaos
7. The human tragedy of denying AIDS
8. Research Finds Popular Household Pets Transmit Dangerous Parasites to Humans
9. Chicago's Own Hacker Con Set for May, Teaches Human Hacking to Corporations
10. University of Pennsylvania researchers find that the unexpected is a key to human learning
11. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Cowen Conference
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Human Heart Can Make New Cells
(Date:10/13/2017)... ... October 13, 2017 , ... ... in the greater Dallas, Miami, and Raleigh regions, is organizing an extended charity ... a rare and deadly chromosome abnormality. , After struggling since birth with several ...
(Date:10/13/2017)... ... 13, 2017 , ... The International Association of Eating Disorders ... for the field of eating disorders, announces the opening of early registration for ... Florida at the Omni Resort at ChampionsGate. , The annual iaedp™ ...
(Date:10/13/2017)... ... October 13, 2017 , ... Many families have long-term insurance that ... insurance companies have a waiver for care if the client has a cognitive impairment ... family pays for care, is often waived, so the benefits from their insurance start ...
(Date:10/13/2017)... ... , ... Talented host, actor Rob Lowe, is introducing a ... episode of "Success Files," which is an award-winning educational program broadcasted on PBS ... in-depth with passion and integrity. , Sciatica occurs when the sciatic nerve in ...
(Date:10/12/2017)... Francisco, CA (PRWEB) , ... October 12, 2017 ... ... Dr. Cheng, are now treating sleep apnea using cutting-edge Oventus O2Vent ... apnea, a serious sleep disorder characterized by frequent cessation in breathing. Oral appliances ...
Breaking Medicine News(10 mins):
(Date:9/27/2017)... Sept. 27, 2017  DarioHealth Corp. (NASDAQ: DRIO), a leading global digital ... its MyDario product is expected to appear on The Dr. Oz Show ... Oz Show airs in your area: http://www.doctoroz.com/page/where-watch-dr-oz-show ... The nine-time Emmy award-winning, The Dr. Oz Show kicked off ... The segment features ...
(Date:9/23/2017)... -- Janssen Biotech, Inc. (Janssen) announced today that it ... Food and Drug Administration (FDA) for the Biologics License ... of moderately to severely active rheumatoid arthritis (RA). The ... to further evaluate the safety of sirukumab in the ... "We are disappointed by ...
(Date:9/19/2017)... , Sept. 19, 2017 HistoSonics, Inc., a venture-backed medical device company developing ... of targeted tissues, announced three leadership team developments today:   ... ... ... Veteran medical device executive Josh Stopek ...
Breaking Medicine Technology: