Navigation Links
How defects in 1 gene cause 3 distinct and devastating human diseases

By studying heat-loving microbes, two research teams have gained new insight into how seemingly small differences in a single protein involved in DNA transcription and repair can lead to strikingly different genetic disorders in humans.

The two studies in the May 30th issue of Cell, a Cell Press publication, uncover the crystal structure and biochemical activity of an enzyme known as XPD helicase taken from Sulfolobus archaea, microbes distinct from bacteria that share many fundamental genes with humans. For reasons that had remained rather mysterious until now, point mutations in human XPDsometimes at neighboring sitescan spell the difference between cancer-prone xeroderma pigmentosa, the aging disorder known as Cockayne syndrome and another aging disorder called trichothiodystrophy.

If you consider the linear sequence of XPD and map the [disease-linked] point mutations onto it, there is nothing clear about why they would be causative for one of the three diseases or another, said Jill Fuss of The Scripps Research Institute. By having these structures for XPD, we suddenly see how it is working.

The protein from archaea is a simplified model, but that doesnt stop us learning a lot about the biology of the human enzyme, said Malcolm White of University of St Andrews, who led the other study. Archaeal protein structures are often very close matches to the equivalent proteins from humans, even though they diverged from one another three billion years ago. We can learn a lot about human health by looking deep into evolutionary time.

Archaea have particular similarities with humans and other eukaryotes in the way in which they process information, including DNA replication, transcription and repair, White explained. One of those common elements is XPD helicase, a component of a fundamental complex (known as TFIIH) with roles in initiating the transcription of genes into the templates for protein and in the repair of damaged DNA. In both instances, the helicase parts the two DNA strands at either the transcription start site or the site of DNA damage.

Defects in XPD are known to underlie xeroderma pigmentosa (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). Although people with all three diseases share a sensitivity to the sun, they differ greatly in their predispositions to cancer or accelerated aging, explained John Tainer, who led the Scripps study. XP patients show several 1000-fold increase in skin cancer, whereas neither CS nor TTD patients show an increase in the cancer incidence despite their sun sensitivity. Furthermore, both CS and TTD are premature aging diseases plus developmental disorders, with CS patients being more severely affected and exhibiting severe mental retardation from birth.

Both teams now have evidence to explain what separates the diseases despite their similar molecular causes. They find that XP-causing mutations in XPD all fall in sites where the helicase binds ATP (the energy currency of the cell) or DNA. Those alterations leave the enzyme unable to function in DNA repair. However, the overall effect on the structure of the enzyme is minimal. As such, the enzyme still fills its position in the TFIIH complex, allowing transcription to proceed. That inability to repair defects, leaves those with XP prone to developing cancer as mutations arise and go uncorrected.

In the case of TTD, the defect is quite different, White said. TTD-linked mutations are found all over the protein at points important to its interactions with other proteins. Therefore, those mutations leave the protein floppy, destabilizing the entire TFIIH complex and causing defects in both transcription and repair.

It is thought that the transcription defects protect against cancer, but lead to an increase in cell death and therefore the rapid aging symptoms seen in TTD patients, White said.

As for CS, Tainers group suggests it results when defects in XPD lock the protein into a rigid position. As a result, they said, the protein may stick in repair mode and cut out DNA at sites where it should be transcribing.

White agrees that CS seems to result from mutations that influence the XPD proteins flexibility. However, hes not yet sure exactly how that leads to the symptoms of CS.

The new insights into XPD point to the importance of whole proteins, not just their active sites.

Weve been able to characterize three activities together with the structure, Tainer said. Weve shown how mutations in the binding site alone can cause cancer. Scientists often thought it was just the active sites that were importantthat other changes wouldnt matter. But we see that other changes can lead to very severe defects.

The results also hold an important general lesson for the value of protein structure for understanding gene function. The results of the Human Genome Project have revealed associations between sequence mutations and particular diseases or disease risks, but in many cases we dont know why, Tainer said. As in the case of XPD, the protein structures may hold the key.


Contact: Cathleen Genova
Cell Press

Related medicine news :

1. Another Reason Not to Smoke While Pregnant: Birth Defects
2. Cell-surface sugar defects may trigger nerve damage in multiple sclerosis patients
3. Heart Defects Can Delay Babys Brain Development
4. Hazardous Advanced Micro Devices (A.M.D.) Clean Room Chemicals Caused Multiple Birth Defects, Lawsuit Alleges
5. Procedure to detect fetal heart defects is first automated use of 3-D ultrasound
6. For babies with heart defects, death risk is far lower at most experienced hospitals
7. Babies With Heart Defects Do Best at Hospitals With Most Experience
8. Congenital heart defects increasing among IVF twins
9. Folic Acid in the Food Supply Reduces Birth Defects, but May Cause Extra Cancers, Reports the Harvard Womens Health Watch
10. Reconstructing mandibular defects with bioengineered tooth and bone
11. The Childrens Hospital of Philadelphia Opens the Worlds First Delivery Unit for Mothers Diagnosed with Birth Defects in Fetus
Post Your Comments:
(Date:11/24/2015)... ... November 24, 2015 , ... United Benefit ... welcome Winter-Dent & Company as its newest Partner Firm. Based in Jefferson City, ... client's most trusted advisor regardless of whether that client is a business, a ...
(Date:11/24/2015)... ... November 24, 2015 , ... With Thanksgiving right around the ... safety tips to help protect your family and vehicle. , According to the National ... Thanksgiving holiday weekend. Amica is sharing the following safety tips from the NHTSA: ...
(Date:11/24/2015)... , ... November 24, 2015 , ... Dr. Rodney E. Willey , has answered ... venture, Koala Center for Sleep Disorders, provides treatment for snoring and sleep apnea ... opened a Koala Center for Sleep Disorders in the US, one of four in the ...
(Date:11/24/2015)... IN (PRWEB) , ... November 24, 2015 , ... Dr. ... his office to help the community stress less this holiday season. During the ... additional stress in people's lives and the team at AlignLife want to help provide ...
(Date:11/24/2015)... ... November 24, 2015 , ... Dehydration, defined as a ... water to perspiration in the hot sun, and heat stroke and death will quickly ... and radio host Sharon Kleyne. Every cell, system and structure requires water to function ...
Breaking Medicine News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015  Array BioPharma Inc. ... Chief Executive Officer, Ron Squarer , will ... in New York.  The public is welcome to ... the Array BioPharma website.Event:Piper Jaffray Annual Healthcare ConferencePresenter:  ... December 2, 2015Time:1:30 p.m. Eastern Time Webcast: ...
(Date:11/24/2015)... , 24. November 2015 ... Breathing Pacemaker Systems, ist erfreut, die Berufung ... Consultant bekannt geben zu können. ...   --> Foto - ... (Schweden). Von 1984-1986 war er Fellow ...
(Date:11/24/2015)... , Nov. 24, 2015 Avery Biomedical Devices ... pleased to announce the appointment of Anders Jonzon ... Dr. Jonzon is ... at Children,s Hospital, Uppsala University, Uppsala and Children,s Hospital, ... he was a fellow at the Cardiovascular Institute (UCSF). ...
Breaking Medicine Technology: