Navigation Links
High-throughput sequencing shows potentially hundreds of gene mutations related to autism

Genomic technology has revolutionized gene discovery and disease understanding in autism, according to an article published in the December 20 issue of the journal Neuron.

The paper highlights the impact of a genomic technology called high-throughput sequencing (HTS) in discovering numerous new genes that are associated with autism spectrum disorder (ASD).

"These new discoveries using HTS confirm that the genetic origins of autism are far more complex than previously believed," said Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center at the Icahn School of Medicine at Mount Sinai, and lead author of the article in Neuron.

Dr. Buxbaum is co-founder and co-director of the Autism Sequencing Consortium (ASC), a large multisite collaboration which is a model for future research. The co-authors of the article are Mark J. Daly, Broad Institute and Harvard Medical School; Bernie Devlin, University of Pittsburgh; Thomas Lehner, National Institute of Mental Health; Kathryn Roeder, Carnegie-Mellon University; Matthew W. State (co-director), Yale University, and the ASC.

HTS is a revolutionary new technology that allows scientists to obtain the sequence of all 22,000 human genes and the entire human genome in one experiment. This provides an unparalleled look at an individual's genetic makeup and allows for gene discovery and for genetic testing.

"HTS shows us that there are not just a few mutations, but potentially hundreds of mutations that are linked to autism," said Dr. Buxbaum. "By identifying the many genetic roots of this disorder, we can better understand its biology, which in turn will allow us to develop more tailored treatments for individuals. It is a transformative time for genetic research in autism."

Ground-breaking, highly reproducible discoveries identified through HTS described in the article include:

  • the "staggering degree" of genetic heterogeneity in autism, which means that many individuals with autism do not share similar gene mutations;
  • the identification of an increasing number of specific genes and chromosomal intervals conferring risk;
  • the important emerging role in autism of both rare and "de novo germline mutations," or mutations developed in the sperm or ovaries of parents and passed on to children; and
  • gene loci associated with autism that overlap with gene loci associated with other illnesses, such as intellectual disability and epilepsy.

Dr. Buxbaum estimates that researchers have already identified 50 specific genes and 20-40 chromosomal loci conferring risk. The researchers predict, based on the first studies in 1,000 families, that there are many hundreds of undiscovered ASD associated genes. This surge in the number of genes related to autism revealed by HTS marks a coming of age for high-throughput sequencing, the authors believe. The path forward for new discoveries, they write, is via one of two HTS processes: whole exome sequencing (WES) or whole genome sequencing (WGS) in large cohorts. The exome is the small fraction of the genome that codes for proteins.

The article spotlights the successful work of the ASC, founded in 2010, as a model to bring to fruition an explosive gene discovery process. The ASC member sites, using WES technology also available at Mount Sinai, recently discovered six de novo mutations in autism patients: CHD8, DYRK1A, GRIN2B, KATNAL2, POGZ and SCN2A. These six genes may be targets for future treatments. Some of these discoveries were accomplished rapidly because the Consortium's 25 research groups, located around the world, combined their data and shared it before publication. As a result, they conducted four large studies using 1,000 families.

There are approximately 8,000 to 10,000 families currently available to the Consortium to study autism, but the article suggests many more are needed to speed up gene discoveries. Also needed for the future is increased collaboration among research teams and the integration of autism studies with studies of other psychiatric disorders. In addition, high-capacity supercomputers are needed to analyze the data. The ASC was designed to address these issues, and Mount Sinai has created Minerva, one of the largest academic supercomputers in the world, to help with these goals.

Contact: Mount Sinai Press Office
The Mount Sinai Hospital / Mount Sinai School of Medicine

Related medicine news :

1. Johns Hopkins scientists pair blood test and gene sequencing to detect cancer
2. Surprising findings from NHLBI Exome Sequencing Project reported
3. NIH uses genome sequencing to help quell bacterial outbreak in Clinical Center
4. New Stanford method enables sequencing of fetal genomes using only maternal blood sample
5. Gene sequencing project identifies potential drug targets in common childhood brain tumor
6. 2 cups of milk a day ideal for childrens health, new research shows
7. Student-athletes could lose eligibility, scholarships with tweet missteps, Baylor research shows
8. Study shows COPD is not independent risk factor for lung cancer
9. Study shows antidepressant could do double duty as diabetes drug
10. New hormone therapy shows promise for menopausal symptoms in animal model
11. Zinc Shows Promise Against Deadly Jellyfish Venom
Post Your Comments:
(Date:6/27/2016)... ... June 27, 2016 , ... TherapySites, the leading ... with Tennessee Counseling Association. This new relationship allows TherapySites to continue ... Association, adding exclusive benefits and promotional offers. , "TCA is extremely excited about ...
(Date:6/26/2016)... Michigan (PRWEB) , ... June 26, 2016 , ... On ... as sponsor of the 2016 Cereal Festival and World’s Longest Breakfast Table in Battle ... honor of the city’s history as home to some of the world’s leading providers ...
(Date:6/25/2016)... ... June 25, 2016 , ... Experts ... applications at AcademyHealth’s Annual Research Meeting June 26-28, 2016, at the Hynes Convention ... health care topics including advance care planning, healthcare costs and patient and family ...
(Date:6/25/2016)... ... June 25, 2016 , ... As a lifelong Southern Californian, Dr. Omkar Marathe ... from the David Geffen School of Medicine at UCLA. He trained in Internal Medicine ... his fellowship in hematology/oncology at the UCLA-Olive View-Cedars Sinai program where he had the ...
(Date:6/24/2016)... ... ... Those who have experienced traumatic events may suffer from a complex set of ... or alcohol abuse, as a coping mechanism. To avoid this pain and suffering, Serenity ... event. , Trauma sufferers tend to feel a range of emotions, from depression, guilt, ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Research ... MEMS Devices Medical Market Analysis 2016 - Forecast to 2022" ... The report contains up to date financial data ... analysis. Assessment of major trends with potential impact on the ... analysis of market segmentation which comprises of sub markets, regional ...
(Date:6/23/2016)... INDIANAPOLIS , June 23, 2016 /PRNewswire/ ... Diabetes Tomorrow,s Leaders Scholarship is any indication, the future ... today online at by the Diabetes ... stand in the way of academic and community service ... scholarship program since 2012, and continues to advocate for ...
(Date:6/23/2016)... 23, 2016 Research and Markets ... Volumes: Global Analysis (United States, China, Japan, Brazil, United ... to their offering. ... healthcare business planners, provides surgical procedure volume data in ... with an in-depth analysis of growth drivers and inhibitors, ...
Breaking Medicine Technology: