Navigation Links
Get a whiff of this: Low-cost sensor can diagnose bacterial infections
Date:4/27/2011

CHAMPAIGN, Ill. Bacterial infections really stink. And that could be the key to a fast diagnosis.

Researchers have demonstrated a quick, simple method to identify infectious bacteria by smell using a low-cost array of printed pigments as a chemical sensor. Led by University of Illinois chemistry professor Ken Suslick, the team published its results in the Journal of the American Chemical Society.

Hospitals have used blood cultures as the standard for identifying blood-borne bacterial infections for more than a century. While there have been some improvements in automating the process, the overall method has remained largely constant. Blood samples are incubated in vials for 24 to 48 hours, when a carbon dioxide sensor in the vials will signal the presence of bacteria. But after a culture is positive, doctors still need to identify which species and strain of bacteria is in the vial, a process that takes up to another day.

"The major problem with the clinical blood culturing is that it takes too long," said Suslick, the Marvin T. Schmidt professor of chemistry, who also is a professor of materials science and engineering and a member of the Beckman Institute for Advanced Science and Technology. "In 72 hours they may have diagnosed the problem, but the patient may already have died of sepsis."

While there has been some interest in using sophisticated spectroscopy or genetic methods for clinical diagnosis, Suslick's group focused on another distinctive characteristic: smell. Many experienced microbiologists can identify bacteria based on their aroma. Bacteria emit a complex mixture of chemicals as by-products of their metabolism. Each species of bacteria produces its own unique blend of gases, and even differing strains of the same species will have an aromatic "fingerprint."

An expert in chemical sensing, Suslick previously developed an artificial "nose" that can detect and identify poisonous gases, toxins and explosives in the air.

"Our approach to this problem has been to think of bacteria as simply micron-sized chemical factories whose exhaust is not regulated by the EPA," Suslick said. "Our technology is now well-proven for detecting and distinguishing among different chemical odorants, so applying it to bacteria was not much of a stretch."

The artificial nose is an array of 36 cross-reactive pigment dots that change color when they sense chemicals in the air. The researchers spread blood samples on Petri dishes of a standard growth gel, attached an array to the inside of the lid of each dish, then inverted the dishes onto an ordinary flatbed scanner. Every 30 minutes, they scanned the arrays and recorded the color changes in each dot. The pattern of color change over time is unique to each bacterium.

"The progression of the pattern change is part of the diagnosis of which bacteria it is," Suslick said. "It's like time-lapse photography. You're not looking just at a single frame, you're looking at the motion of the frames over time."

In only a few hours, the array not only confirms the presence of bacteria, but identifies a specific species and strain. It even can recognize antibiotic resistance a key factor in treatment decisions.

In the paper, the researchers showed that they could identify 10 of the most common disease-causing bacteria, including the hard-to-kill hospital infection methicillin-resistant Staphylococcus aureus (MRSA), with 98.8 percent accuracy. However, Suslick believes the array could be used to diagnose a much wider variety of infections.

"We don't have an upper limit. We haven't yet found any bacteria that we can't detect and distinguish from other bacteria," he said. "We picked out a sampling of human pathogenic bacteria as a starting point."

Given their broad sensitivity, the chemical-sensing arrays also could enable breath diagnosis for a number of conditions. Medical researchers at other institutions have already performed studies using Suslick's arrays to diagnose sinus infections and to screen for lung cancer.

Next, the team is working on integrating the arrays with vials of liquid growth medium, which is a faster culturing agent and more common in clinical practice than Petri dishes. They have also improved the pigments to be more stable, more sensitive and easier to print. The device company iSense, which Suslick co-founded, is commercializing the array technology for clinical use.


'/>"/>

Contact: Liz Ahlberg
eahlberg@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related medicine news :

1. Chew on this: 6 dental myths debunked
2. Low-cost wireless sensor networks open new horizons for the Internet of things
3. Plant stem cells could be fruitful source of low-cost cancer drug
4. Researchers engineer microbes for low-cost production of anti-cancer drug, Taxol
5. New Book Offers Seven Low-Cost Habits for a Healthier, Happier Life
6. Worlds most useful tree provides low-cost water purification method for developing world
7. Self-powered, blood-activated sensor detects pancreatitis quickly and cheaply
8. MEMS thermal sensor detects pre-atherosclerotic lesions
9. Implantable Sensor Measures Blood Sugar Levels
10. Insulin Pump With Blood Sugar Sensor May Improve on Injections
11. Sensor and insulin pump results in better blood-sugar control in all age groups with diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Get a whiff of this: Low-cost sensor can diagnose bacterial infections
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... "FCPX editors ... customizable inside of Final Cut Pro X," said Christina Austin - CEO of Pixel ... style. Final Cut Pro X users can now reveal the media of ...
(Date:6/27/2016)... Brooklyn, NY (PRWEB) , ... June 27, 2016 ... ... is using cutting edge technology to revolutionize the emergency ambulance transport experience for ... Many are aware of how Uber has disrupted the taxi industry through the ...
(Date:6/26/2016)... ... 26, 2016 , ... On June 10-11, 2016, A Forever Recovery, a holistic ... World’s Longest Breakfast Table in Battle Creek, MI, where the rehabilitation facility is located. ... some of the world’s leading providers of cereal and other breakfast foods. Its residents ...
(Date:6/26/2016)... , ... June 26, 2016 , ... Brent Kasmer, a legally blind and certified personal ... personalized through a fitness app. The fitness app plans to fix the two major problems ... offer a one size fits all type program , They don’t eliminate all ...
(Date:6/25/2016)... TX (PRWEB) , ... June 25, 2016 , ... Austin ... of the American College of Mohs Surgery and to Dr. Russell Peckham for medical ... and highly effective treatment for skin cancer. The selective fellowship in Mohs Micrographic Surgery ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... Dehaier Medical Systems Ltd. (NASDAQ: ... and sells medical devices and wearable sleep respiratory products ... cooperation agreement with Hongyuan Supply Chain Management Co., Ltd. ... 20, 2016, to develop Dehaier,s new Internet medical technology ... will leverage Hongyuan Supply Chain,s sales platform to reach ...
(Date:6/24/2016)... DUBLIN , June 24, 2016 ... "The World Market for Companion Diagnostic Tests" report to ... World Market for Companion Diagnostics The World ... diagnostic and personalized medicine diagnostics. Market analysis in the report ... Diagnostics Test Market (In Vitro Diagnostic Kits) by Region (N. ...
(Date:6/24/2016)... , June 24, 2016   Pulmatrix, Inc ., ... developing innovative inhaled drugs, announced today that it was ... Investments reconstituted its comprehensive set of U.S. and ... "This is an important milestone for Pulmatrix," said Chief ... shareholder awareness of our progress in developing drugs for ...
Breaking Medicine Technology: