Navigation Links
Get a whiff of this: Low-cost sensor can diagnose bacterial infections
Date:4/27/2011

CHAMPAIGN, Ill. Bacterial infections really stink. And that could be the key to a fast diagnosis.

Researchers have demonstrated a quick, simple method to identify infectious bacteria by smell using a low-cost array of printed pigments as a chemical sensor. Led by University of Illinois chemistry professor Ken Suslick, the team published its results in the Journal of the American Chemical Society.

Hospitals have used blood cultures as the standard for identifying blood-borne bacterial infections for more than a century. While there have been some improvements in automating the process, the overall method has remained largely constant. Blood samples are incubated in vials for 24 to 48 hours, when a carbon dioxide sensor in the vials will signal the presence of bacteria. But after a culture is positive, doctors still need to identify which species and strain of bacteria is in the vial, a process that takes up to another day.

"The major problem with the clinical blood culturing is that it takes too long," said Suslick, the Marvin T. Schmidt professor of chemistry, who also is a professor of materials science and engineering and a member of the Beckman Institute for Advanced Science and Technology. "In 72 hours they may have diagnosed the problem, but the patient may already have died of sepsis."

While there has been some interest in using sophisticated spectroscopy or genetic methods for clinical diagnosis, Suslick's group focused on another distinctive characteristic: smell. Many experienced microbiologists can identify bacteria based on their aroma. Bacteria emit a complex mixture of chemicals as by-products of their metabolism. Each species of bacteria produces its own unique blend of gases, and even differing strains of the same species will have an aromatic "fingerprint."

An expert in chemical sensing, Suslick previously developed an artificial "nose" that can detect and identify poisonous gases, toxins and explosives in the air.

"Our approach to this problem has been to think of bacteria as simply micron-sized chemical factories whose exhaust is not regulated by the EPA," Suslick said. "Our technology is now well-proven for detecting and distinguishing among different chemical odorants, so applying it to bacteria was not much of a stretch."

The artificial nose is an array of 36 cross-reactive pigment dots that change color when they sense chemicals in the air. The researchers spread blood samples on Petri dishes of a standard growth gel, attached an array to the inside of the lid of each dish, then inverted the dishes onto an ordinary flatbed scanner. Every 30 minutes, they scanned the arrays and recorded the color changes in each dot. The pattern of color change over time is unique to each bacterium.

"The progression of the pattern change is part of the diagnosis of which bacteria it is," Suslick said. "It's like time-lapse photography. You're not looking just at a single frame, you're looking at the motion of the frames over time."

In only a few hours, the array not only confirms the presence of bacteria, but identifies a specific species and strain. It even can recognize antibiotic resistance a key factor in treatment decisions.

In the paper, the researchers showed that they could identify 10 of the most common disease-causing bacteria, including the hard-to-kill hospital infection methicillin-resistant Staphylococcus aureus (MRSA), with 98.8 percent accuracy. However, Suslick believes the array could be used to diagnose a much wider variety of infections.

"We don't have an upper limit. We haven't yet found any bacteria that we can't detect and distinguish from other bacteria," he said. "We picked out a sampling of human pathogenic bacteria as a starting point."

Given their broad sensitivity, the chemical-sensing arrays also could enable breath diagnosis for a number of conditions. Medical researchers at other institutions have already performed studies using Suslick's arrays to diagnose sinus infections and to screen for lung cancer.

Next, the team is working on integrating the arrays with vials of liquid growth medium, which is a faster culturing agent and more common in clinical practice than Petri dishes. They have also improved the pigments to be more stable, more sensitive and easier to print. The device company iSense, which Suslick co-founded, is commercializing the array technology for clinical use.


'/>"/>

Contact: Liz Ahlberg
eahlberg@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related medicine news :

1. Chew on this: 6 dental myths debunked
2. Low-cost wireless sensor networks open new horizons for the Internet of things
3. Plant stem cells could be fruitful source of low-cost cancer drug
4. Researchers engineer microbes for low-cost production of anti-cancer drug, Taxol
5. New Book Offers Seven Low-Cost Habits for a Healthier, Happier Life
6. Worlds most useful tree provides low-cost water purification method for developing world
7. Self-powered, blood-activated sensor detects pancreatitis quickly and cheaply
8. MEMS thermal sensor detects pre-atherosclerotic lesions
9. Implantable Sensor Measures Blood Sugar Levels
10. Insulin Pump With Blood Sugar Sensor May Improve on Injections
11. Sensor and insulin pump results in better blood-sugar control in all age groups with diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Get a whiff of this: Low-cost sensor can diagnose bacterial infections
(Date:6/24/2016)... ... ... in a crisis. Her son James, eight, was out of control. Prone to extreme mood ... something upset him, he couldn’t control his emotions,” remembers Marcy. “If there was a ... children and say he was going to kill them. If we were driving on ...
(Date:6/24/2016)... San Francisco, CA (PRWEB) , ... June 24, ... ... at CitiDent, is now offering micro-osteoperforation for accelerated orthodontic treatment. Dr. Cheng has ... , self-ligating Damon brackets , AcceleDent, and accelerated osteogenic orthodontics. , ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... People across ... in Genome magazine’s Code Talker Award, an essay contest in which patients and their ... award to be presented at the 2016 National Society of Genetic Counselors (NSGC) Annual ...
(Date:6/24/2016)... ... June 24, 2016 , ... ... Investment Group (TGIG), has initiated cultivation and processing operations at its production facility, ... Pahrump, Nevada. , Puradigm is the manufacturer of a complete system of proactive ...
(Date:6/24/2016)... ... June 24, 2016 , ... Venture Construction Group (VCG) sponsors ... on June 20th at the Woodmont Country Club at 1201 Rockville Pike, Rockville, Maryland, ... to helping service members that have been wounded in battle and their families. Venture ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... 2016 Revolutionary technology includes multi-speaker ... , industry leaders in advanced audiology and hearing aid ... Opn ™, the world,s first internet connected hearing aid ... devices.      (Photo: http://photos.prnewswire.com/prnh/20160622/382240 ) ... of ,world firsts,: , TwinLink™ - the ...
(Date:6/23/2016)... -- Research and Markets has announced the ... (United States, China, Japan, Brazil, United Kingdom, Germany, France, ... Surgical Procedure Volumes: ... provides surgical procedure volume data in a geographic context. ... analysis of growth drivers and inhibitors, including world population ...
(Date:6/23/2016)... -- The National Pharmaceutical Council (NPC) today announced that ... organization as its newest member.  ... and chief scientific officer, Mallinckrodt Pharmaceuticals, will serve ... of Directors. ... in support of our efforts to conduct research ...
Breaking Medicine Technology: