Navigation Links
Function of molecular switch pinpointed in severe congenital neutropenia
Date:3/6/2008

CINCINNATI Researchers have for the first time cleared an important hurdle to clarifying the molecular mechanics behind Severe Congenital Neutropenia (SCN), a deadly disease characterized by a deficiency of neutrophils a type of mature white blood cell important to fighting infection and disease. A research team led by Cincinnati Childrens Hospital Medical Center reports in the March 14 Immunity the first evidence of how a specific genetic mutation found in humans with SCN blocks neutrophil development in mouse bone marrow cells.

The finding is expected to give researchers a way to more effectively study SCN, which puts children at increased risk of developing bacterial and fungal infections and acute myelogenous leukemia.

Our discovery that humans and mice have a shared pathway for the development of neutrophils should provide new avenues for understanding the molecular basis of SCN associated with other genetic mutations, said H. Leighton Grimes, Ph.D., a researcher in the Division of Immunology at Cincinnati Childrens and lead author of the study. Its important that we find clues for developing possible treatments to help children with this disease.

The research team studied a gene called Growth Factor Independent-1 (GFI1), which is expressed in bone marrow stem cells and known to help control the growth and differentiation of blood cells, including those that become neutrophils. When it works normally, GFI1 promotes the formation of neutrophils by blocking the development of macrophages, the default differentiation pathway. Specifically, GFI1 acts as a molecular switch to moderate the function of another gene, Colony Stimulating Factor-1 (CSF1), which tells marrow stem cells to form macrophage white blood cells instead of neutrophils. Dr. Grimes and his colleagues discovered that GFI1s ability to act as a rate-limiting molecular switch is compromised by a genetic error found in patients with SCN, a mutation known as GFI1N382S. When the mutant form of GFI1 found in SCN patients interferes with GFI1s switching function, it results in deregulated expression of CSF1, an overproduction of macrophages and blocks to the formation of neutrophils. The researchers also found that blocking the function or expression of CSF1 allowed mutant GFI1cells to become neutrophils.

In SCN patients with mutations in GFI1, its as though the switch that allows the formation of neutrophils is always in the off position, and the bone marrow stem cells are constantly receiving the message to become macrophages, said Dr. Grimes. The ability to produce both types of blood cells is important to fight off infection.

Pursuing the GFI1-CSF1 molecular pathway also led to the studys other milestone, as Dr. Grimes and his co-investigators were able to develop a mouse model for SCN that allows future studies of possible therapies. The most common known genetic mutation found in humans with SCN is in a gene called ELA2, which encodes a protein that cleaves other proteins. Unfortunately, previous research has shown that mice with mutated or deleted ELA2 do not develop SCN, leaving researchers without a workable model of SCN for study. The team used this problem as an opportunity. Because ELA2 is also regulated by GFI1, Dr. Grimes and his colleagues decided to take a step back in the molecular process to further study the influence of GFI1. Their focus on GFI1 also allowed them incorporate their previous research that identified a family of SCN patients, all of whom had the GFI1N382S mutation.

SNC is a rare inherited autosomal recessive disease. The current treatment for SCN includes recombinant Granulocyte-colony stimulating factor (GCSF), which increases the formation and proliferation of white blood cells for most patients. However, the treatment still fails to correct the underlying gene defects behind the disease and does not work in all patients. There is also concern that GCSF treatment may help induce the development of leukemia, highlighting the need of different treatment options. Besides being prone to infection or acute myelogenous leukemia, children with SCN can contract the bone marrow disorder, myelodysplasia, in which patients have ineffective production of blood cells and are at higher risk of developing acute myelogenous leukemia.


'/>"/>

Contact: Nick Miller
513-803-6035
Cincinnati Children's Hospital Medical Center
Source:Eurekalert

Related medicine news :

1. Gleevec May Disrupt Ovarian Function
2. Deficit in Brain Function Puts Teens at Risk of Drug Abuse
3. Type 2 diabetes may be caused by intestinal dysfunction
4. Oracle Introduces Remote Data Capture Onsite 4.5.3 With Extensive New Functionality for Investigative Site Personnel
5. Novel mechanism found that may boost impaired function of leukemia protein
6. The Ultimate Valentines Day Gift: Indulgent Organic Chocolate for Women That Combines Great Taste & Functional Ingredients
7. A functional immune system can be derived from embryonic stem cells, preliminary study finds
8. Urinary dysfunction troubles men who undergo prostate removal
9. Secondhand Smoke Worsens Lung Function in Cystic Fibrosis Patients
10. Researchers Map Paths Governing Neuron Function
11. Manufacturing Organizations Identify Efficiencies in Maintenance Functions
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... ... June 24, 2016 , ... Venture Construction Group (VCG) ... held on June 20th at the Woodmont Country Club at 1201 Rockville Pike, Rockville, ... dedicated to helping service members that have been wounded in battle and their families. ...
(Date:6/24/2016)... ... June 24, 2016 , ... Advanced ... 2016 Miss Arizona pageant as its official Medspa Sponsor. Dr. Josh Olson, a ... Chandler, Arizona. , Dr. Olson says the decision to support the pageant ...
(Date:6/24/2016)... Knoxville, TN (PRWEB) , ... June 24, 2016 ... ... develop population health management skills and infrastructure. Most providers, however, are unsure how ... Population Health Ascend to define a path forward tailored to an ...
(Date:6/24/2016)... ... June 24, 2016 , ... Today, InhaleLabs.com (Inhale) offilially launched ... medication by matching users with high quality water pipes within an ideal price range. ... , Inhale was founded by two brothers, Nick and Mike Hunter, who use medical ...
(Date:6/24/2016)... ... 24, 2016 , ... Dr. Seema Daulat, a native Texan and University of ... location as of July 13, 2016. , Dr. Daulat earned her Doctorate of Medicine ... regularly volunteered at the Agape Clinic serving Dallas’ underprivileged community. , Following medical school, ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... 2016  Arkis BioSciences, a leading innovator in ... durable cerebrospinal fluid treatments, today announced it has ... is led by Innova Memphis, followed by Angel ... investors.  Arkis, new financing will accelerate the commercialization ... release of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... BEVERLY HILLS, Calif. , June 23, 2016 ... faced the many challenges of the current process. Many of ... option because of the technical difficulties and high laboratory costs ... would have to offer it at such a high cost ... to afford it. Dr. Parsa Zadeh , ...
(Date:6/23/2016)... 2016 Roche (SIX: RO, ROG; OTCQX: RHHBY) ... Elecsys BRAHMS PCT (procalcitonin) assay as a dedicated testing ... With this clearance, Roche is the first IVD company ... for sepsis risk assessment and management. PCT ... PCT levels in blood can aid clinicians in assessing ...
Breaking Medicine Technology: