Navigation Links
Function of molecular switch pinpointed in severe congenital neutropenia
Date:3/6/2008

CINCINNATI Researchers have for the first time cleared an important hurdle to clarifying the molecular mechanics behind Severe Congenital Neutropenia (SCN), a deadly disease characterized by a deficiency of neutrophils a type of mature white blood cell important to fighting infection and disease. A research team led by Cincinnati Childrens Hospital Medical Center reports in the March 14 Immunity the first evidence of how a specific genetic mutation found in humans with SCN blocks neutrophil development in mouse bone marrow cells.

The finding is expected to give researchers a way to more effectively study SCN, which puts children at increased risk of developing bacterial and fungal infections and acute myelogenous leukemia.

Our discovery that humans and mice have a shared pathway for the development of neutrophils should provide new avenues for understanding the molecular basis of SCN associated with other genetic mutations, said H. Leighton Grimes, Ph.D., a researcher in the Division of Immunology at Cincinnati Childrens and lead author of the study. Its important that we find clues for developing possible treatments to help children with this disease.

The research team studied a gene called Growth Factor Independent-1 (GFI1), which is expressed in bone marrow stem cells and known to help control the growth and differentiation of blood cells, including those that become neutrophils. When it works normally, GFI1 promotes the formation of neutrophils by blocking the development of macrophages, the default differentiation pathway. Specifically, GFI1 acts as a molecular switch to moderate the function of another gene, Colony Stimulating Factor-1 (CSF1), which tells marrow stem cells to form macrophage white blood cells instead of neutrophils. Dr. Grimes and his colleagues discovered that GFI1s ability to act as a rate-limiting molecular switch is compromised by a genetic error found in patients with SCN, a mutation known as GFI1N382S. When the mutant form of GFI1 found in SCN patients interferes with GFI1s switching function, it results in deregulated expression of CSF1, an overproduction of macrophages and blocks to the formation of neutrophils. The researchers also found that blocking the function or expression of CSF1 allowed mutant GFI1cells to become neutrophils.

In SCN patients with mutations in GFI1, its as though the switch that allows the formation of neutrophils is always in the off position, and the bone marrow stem cells are constantly receiving the message to become macrophages, said Dr. Grimes. The ability to produce both types of blood cells is important to fight off infection.

Pursuing the GFI1-CSF1 molecular pathway also led to the studys other milestone, as Dr. Grimes and his co-investigators were able to develop a mouse model for SCN that allows future studies of possible therapies. The most common known genetic mutation found in humans with SCN is in a gene called ELA2, which encodes a protein that cleaves other proteins. Unfortunately, previous research has shown that mice with mutated or deleted ELA2 do not develop SCN, leaving researchers without a workable model of SCN for study. The team used this problem as an opportunity. Because ELA2 is also regulated by GFI1, Dr. Grimes and his colleagues decided to take a step back in the molecular process to further study the influence of GFI1. Their focus on GFI1 also allowed them incorporate their previous research that identified a family of SCN patients, all of whom had the GFI1N382S mutation.

SNC is a rare inherited autosomal recessive disease. The current treatment for SCN includes recombinant Granulocyte-colony stimulating factor (GCSF), which increases the formation and proliferation of white blood cells for most patients. However, the treatment still fails to correct the underlying gene defects behind the disease and does not work in all patients. There is also concern that GCSF treatment may help induce the development of leukemia, highlighting the need of different treatment options. Besides being prone to infection or acute myelogenous leukemia, children with SCN can contract the bone marrow disorder, myelodysplasia, in which patients have ineffective production of blood cells and are at higher risk of developing acute myelogenous leukemia.


'/>"/>

Contact: Nick Miller
513-803-6035
Cincinnati Children's Hospital Medical Center
Source:Eurekalert

Related medicine news :

1. Gleevec May Disrupt Ovarian Function
2. Deficit in Brain Function Puts Teens at Risk of Drug Abuse
3. Type 2 diabetes may be caused by intestinal dysfunction
4. Oracle Introduces Remote Data Capture Onsite 4.5.3 With Extensive New Functionality for Investigative Site Personnel
5. Novel mechanism found that may boost impaired function of leukemia protein
6. The Ultimate Valentines Day Gift: Indulgent Organic Chocolate for Women That Combines Great Taste & Functional Ingredients
7. A functional immune system can be derived from embryonic stem cells, preliminary study finds
8. Urinary dysfunction troubles men who undergo prostate removal
9. Secondhand Smoke Worsens Lung Function in Cystic Fibrosis Patients
10. Researchers Map Paths Governing Neuron Function
11. Manufacturing Organizations Identify Efficiencies in Maintenance Functions
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/11/2016)... ... February 11, 2016 , ... From March ... Academy of Dermatology Annual Meeting at the Walter E. Washington Convention Center in ... for both the condition of hyperhidrosis (excessive sweating) and its treatment options. Specifically, ...
(Date:2/11/2016)... ... February 11, 2016 , ... Husted Kicking has completed its Third ... February 6th & 7th, 2016 according to kicking coach Michael Husted. , “This event ... the NFL’s combine in Indianapolis,” says Husted. “The NFL uses a third party organization ...
(Date:2/11/2016)... ... February 11, 2016 , ... The book, “Computers Should ... services, what questions to ask your IT consultant before signing a contract and how ... computer network. , “With companies relying heavily on e-mail and technology, it’s more important ...
(Date:2/11/2016)... ... February 11, 2016 , ... As part of their 2015 end of ... Round Table Foundation (MDRTF), has gifted $10,000 to University of Chicago to support ovarian ... Billy Cundiff. , “We are honored to support a promising young investigator from Dr. ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... as the World Molecular Imaging Congress (WMIC), will be held in New York ... meeting is “Imaging Biology…Improving Therapy.” The congress will highlight and emphasize how imaging ...
Breaking Medicine News(10 mins):
(Date:2/11/2016)... F ast access to ... at the point of need   ... and services, has launched a ClinicalKey mobile app that enables ... Elsevier designed the mobile app to allow users to select access to ... Android and iOS formats for mobile phone and tablet. ...
(Date:2/11/2016)... , Feb. 11, 2016 Scientists ... cell-isolation method that opens the door to genetic ... now have been impossible to isolate with 100 ... isolate specific tumor types in various stages of ... variants of these cells that are clinically relevant, ...
(Date:2/11/2016)... , Feb. 11, 2016  NanoViricides, Inc. ... it has entered into an agreement with the ... nanoviricides® drug candidates in standard animal models of ... , Research Director. Dr. Romanowski has extensive experience ... --> Eric Romanowski , Research ...
Breaking Medicine Technology: