Navigation Links
Faulty development of immature brain cells causes hydrocephalus

Researchers at the University of Iowa have discovered a new cause of hydrocephalus, a devastating neurological disorder that affects between one and three of every 1,000 babies born. Working in mice, the researchers identified a cell signaling defect, which disrupts immature brain cells involved in normal brain development. By bypassing the defect with a drug treatment, the team was able to correct one aspect of the cells' development and reduce the severity of the hydrocephalus. The findings were published online Nov. 18 in the journal Nature Medicine.

"Our findings identify a new molecular mechanism underlying the development of neonatal hydrocephalus," says Calvin Carter, a student in the UI Graduate Program in Neuroscience and first author on the study. "By targeting this defective signaling pathway in mice using an FDA-approved drug, we were able to successfully treat this disease non-invasively."

Hydrocephalus, sometimes called water on the brain, involves build-up of fluid inside brain spaces known as ventricles. If the excess fluid is not removed, the ventricles expand, which can cause serious brain damage or death. Although hydrocephalus is one of the most common types of brain abnormality in newborn infants, treatment has not changed much over the last half century and involves invasive brain surgery to drain the fluid. Complications are common and the procedure often fails, meaning that children often need repeated surgeries.

"This disease is devastating and costly (almost $2 billion annually), and current treatment options are extremely limited," says Carter, who also is a National Science Foundation graduate research fellow. "Development of non-invasive therapies would revolutionize treatment of this condition."

Carter notes that reducing the size of the ventricles in mice is a clinically significant accomplishment because reducing ventricular size in humans is associated with better patient outcome.

Working in a mouse model of hydrocephalus, the research team honed in on a specific group of immature cells called neural precursor cells (NPCs) that give rise to most types of brain cells, including neurons and glia cells. One particular subgroup of NPCs, which has only recently been identified and is involved in the development of normal ventricles, became the focus of the team's study.

During brain development, this population of immature cells proliferates and dies off in a precisely coordinated process to produce normal ventricles.

The team discovered an imbalance in the proliferation and survival of these cells, which leads to hydrocephalus in the experimental mouse model.

The imbalance is caused by problems in signaling pathways that prompts these NPCs to die or to proliferate. Both processes are abnormal in the mouse model the cells died at twice the rate seen in normal mouse brains and proliferated at only half the normal rate.

Having identified the problem, the researcher then showed that treatment with lithium bypasses one aspect of the abnormal signaling and restores normal proliferation of the precursor cells, which in turn reduces the hydrocephalus in the mice.

"Our findings demonstrate for the first time that neural progenitor cells are involved in the development of neonatal hydrocephalus," Carter says. "We are also the first to manipulate the development of these progenitor cells and successfully treat neonatal hydrocephalus, a feat which opens the door to novel treatment strategies in treating this disease and other neurological diseases."

Because the study identifies cell signaling defects as a cause of hydrocephalus, the findings pave the way for identification of additional signaling pathways involved in the development of this disease, and lay the groundwork for developing non-invasive therapies to treat this disease.

The finding also suggests that successful treatment of hydrocephalus will rely on individualized treatment strategies based on the particular type of hydrocephalus a patient has rather than using a single approach for treating hydrocephalus regardless of its molecule or genetic causes.


Contact: Jennifer Brown
University of Iowa Health Care

Related medicine news :

1. Drug kills cancer cells by restoring faulty tumor suppressor
2. Misidentified and contaminated cell lines lead to faulty cancer science
3. Scientists discover how iron levels and a faulty gene cause bowel cancer
4. 2 genetic deletions in human genome linked to the development of aggressive prostate cancer
5. Kudos for 3 NJIT Enterprise Development Center high-tech companies
6. 2 repressor genes identified as essential for placental development
7. Louisiana Tech University professor earns NSF Early Career Development grant
8. Advanced genetic screening method may speed vaccine development
9. New biospecimens management system in development
10. Developmental Woes Common in Siblings of Children With Autism
11. Mutations impair childhood growth and development by disrupting organization of chromosome pairs
Post Your Comments:
(Date:6/25/2016)... ... June 25, 2016 , ... Conventional wisdom preaches the benefits of moderation, ... the latter, setting the bar too high can result in disappointment, perhaps even self-loathing. ... toward their goal. , Research from reveals that behind the ...
(Date:6/24/2016)... ... ... was in a crisis. Her son James, eight, was out of control. Prone to extreme ... “When something upset him, he couldn’t control his emotions,” remembers Marcy. “If there was ... other children and say he was going to kill them. If we were driving ...
(Date:6/24/2016)... CA (PRWEB) , ... June 24, 2016 , ... Comfort ... the American Cancer Society and the Road To Recovery® program to drive cancer patients ... seniors and other adults to ensure the highest quality of life and ongoing independence. ...
(Date:6/24/2016)... ... June 24, 2016 , ... The Haute ... Dr. Barry M. Weintraub as a prominent plastic surgeon and the network’s newest ... world, and the most handsome men, look naturally attractive. Plastic surgery should be ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Venture ... Golf Classic Tournament held on June 20th at the Woodmont Country Club at ... Luke’s Wings, an organization dedicated to helping service members that have been wounded in ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... DUBLIN , June 24, 2016 ... addition of the "Structural Electronics 2015-2025: Applications, ... In-Mold Electronics, Smart ... Integrated Photovoltaics Structural electronics involves ... as load-bearing, protective structures, replacing dumb structures such ...
(Date:6/24/2016)... PUNE, India , June 24, 2016 ... "Pen Needles Market by Type (Standard Pen Needles, Safety ... 12mm), Therapy (Insulin, GLP-1, Growth Hormone), Mode of Purchase ... published by MarketsandMarkets, This report studies the market for ... is expected to reach USD 2.81 Billion by 2021 ...
(Date:6/23/2016)... DUBLIN , June 23, 2016 ... "Dialysis Devices Global Market - Forecast to 2022" report ... is the treatment method for the patients with kidney failure, ... and excess fluid from the patient,s blood and thus the ... sodium, potassium and chloride in balance. Increasing ...
Breaking Medicine Technology: