Navigation Links
Exploring how the nervous system develops

The circuitry of the central nervous system is immensely complex and, as a result, sometimes confounding. When scientists conduct research to unravel the inner workings at a cellular level, they are sometimes surprised by what they find.

Patrick Keeley, a postdoctoral scholar in Benjamin Reese's laboratory at UC Santa Barbara's Neuroscience Research Institute, had such an experience. He spent years analyzing different cell types in the retina, the light-sensitive layer of tissue lining the inner surface of the eye that mediates the first stages of visual processing. The results of his research are published today in the journal Developmental Cell.

Using a rodent model, Keeley and his colleagues quantified the number of cells present in each retina for 12 different retinal cell types across 30 genetically distinct lines of mice. For every cell type the team investigated, the researchers found a remarkable degree of variation in cell number across the strains. More surprising, the variation in the number of different cell types was largely independent of one another across the strains. This has substantial implications for retinal wiring during cellular development.

"These cells are connected to each other, and their convergence ratios are believed to underlie various aspects of visual processing," Keeley explained, "so it was expected that the numbers of these cell types might be correlated. But that was not the case at all. We found very few significant correlations and even the ones we did find were modest."

Using quantitative trait locus (QTL) analysis a statistical method that links two types of information, in this case cell number and genetic markers Keeley's team compared not only the covariance between different types of cells but also the genetic co-regulation of their number. When they mapped the variation in cell number to locations within the genome, the locations were rarely the same for different types of cells. The result was entirely unexpected.

"Current views of retinal development propose that molecular switches control the alternate fates a newborn neuron should adopt, leading one to expect negative correlations between certain cell types," said Reese, who is also a professor in UCSB's Department of Psychological and Brain Sciences. "Still others have proposed that synaptically connected nerve cells 'match' their pre- and post-synaptic numbers through a process of naturally occurring cell death, leading one to expect positive correlations between connected cell types. Neither expectation was borne out."

"If the cell types are not correlated, then some mice will have retinas with a lot of one cell type say, photoreceptors but not a lot of another cell type to connect to, in this case bipolar cells, or vice versa," Keeley added. "So how does the developing retina accommodate this variation?"

The authors posit that since the ratios of pre- to post-synaptic cell number are not precisely controlled, the rules for connecting them should offer a degree of plasticity as they wire their connections during development.

Take bipolar cells as an example. To test this assumption, the scientists looked at the morphology of their dendrites, the threadlike extensions of a neuron that gather synaptic input. Keeley and coworkers examined their size, their branching pattern and the number of contacts they formed as a function of the number of surrounding bipolar cells and the number of photoreceptors across these different strains.

"We found that the extent of dendritic growth was proportional to the local density of bipolar cells," Keeley explained. "If there are more, they grow smaller dendrites. If there are fewer, they grow larger dendrites.

"Photoreceptor number, on the other hand, had no effect upon the size of the dendritic field of the bipolar cells but determined the frequency of branching made by those very dendrites," he added. "This plasticity in neural circuit assembly ensures that the nervous system modulates its connectivity to accommodate the independent variation in cell number."

This research gives scientists an idea of how individual cell types are generated, how they differentiate and how they form appropriate connections with one another. Researchers in the Reese lab are trying to understand the genes that control these processes.

"I think that's important when we discuss cellular therapeutics such as transplanting stem cells to replace cells that are lost," Keeley said. "We're going to need this sort of fundamental knowledge about neural development to promote the differentiation and integration of transplanted stem cells. This focus on genetic and cellular mechanisms is going to be important for developing new therapies to treat developmental disorders affecting the eye."


Contact: Julie Cohen
University of California - Santa Barbara

Related medicine news :

1. Exploring a legal and ethical gray area for people with dementia
2. Nuanced Media Client, Andrea Blatterg of of ABC Senior Placement Advisors Presents: Wildflower Group’s November Event, "Exploring the Allure of Senior Living"
3. EmpowHER’s Michelle King Robson Announces Launch of HER Radio – Exploring all things Woman
4. Sofia University Hosts Exploring O’Sensei’s Aikido & Zen Calligraphy Workshop
5. Agenda Announced for the BioTechniques 2013 Virtual Symposium on Exploring the Modern Lab
6. Outlook with Ben Kingsley Exploring Sports Injuries in Children
7. Outlook with Ben Kingsley Exploring Role of Nanotechnology in Medicine for Upcoming Report
8. Cola and honey: Exploring food riddles in rhythm disturbances
9. Impact with Martin Sheen Exploring Molecular Medicine in a New Report
10. Yeast Infection No More: Review Exploring Linda Allen's Holistic Yeast Infection Treatment Released
11. Registration Opens for the 2013 BioTechniques Virtual Symposium—Exploring the Modern Lab
Post Your Comments:
Related Image:
Exploring how the nervous system develops
(Date:11/28/2015)... ... November 28, 2015 , ... StatRad , ... added Chris Hafey and Claude Hooton to its board of directors. The announcement ... America (RSNA) 2015 Annual Meeting and continues to strategically transform its focus from ...
(Date:11/28/2015)... ... November 28, 2015 , ... Beginning November 30th at 6:00 a.m. EST until 11:59 p.m. EST, ... With possible savings of up to 20% off orders $80 or more to free gifts ... every few hours. , As a competitive e-commerce website for skin care and cosmetic needs, ...
(Date:11/27/2015)... ... November 27, 2015 , ... According to an article published November ... meeting in Washington D.C. revolved around the fact that proper dental care, both at-home ... stressed the link between periodontal disease (more commonly referred to as gum disease) and ...
(Date:11/27/2015)... (PRWEB) , ... November 27, 2015 , ... ... affecting the health care in America. As people age, more care is needed, ... costs are rising, and medical professionals are being overworked. The forgotten part of ...
(Date:11/27/2015)... ... November 27, 2015 , ... "When ... said an inventor from Hillside, N.J. "Many people catch diseases simply from sitting ... individuals will always be protected from germs." , He developed the patent-pending QUDRATECS ...
Breaking Medicine News(10 mins):
(Date:11/26/2015)... 26, 2015 3D bioprinting market ... to a new report by Grand View Research Inc. Rising ... which demands kidney transplantation is expected to boost the market ... for organ transplantation. --> 3D bioprinting market ... to a new report by Grand View Research Inc. Rising ...
(Date:11/26/2015)... November 26, 2015 ... universitetssjukhus ser potential att använda SyMRI för ... för patienter med multipel skleros (MS) ... med SyntheticMR AB för att kunna använda ... sjukhuset. Med SyMRI kan man generera flera ...
(Date:11/26/2015)... Research and Markets ( ) ... Future Horizons and Growth Strategies in the Italian ... Segment Forecasts, Competitive Intelligence, Emerging Opportunities" report ... --> This new 247-page report ... drug monitoring market, including emerging tests, technologies, instrumentation, ...
Breaking Medicine Technology: