Navigation Links
Exploring how the nervous system develops
Date:6/19/2014

The circuitry of the central nervous system is immensely complex and, as a result, sometimes confounding. When scientists conduct research to unravel the inner workings at a cellular level, they are sometimes surprised by what they find.

Patrick Keeley, a postdoctoral scholar in Benjamin Reese's laboratory at UC Santa Barbara's Neuroscience Research Institute, had such an experience. He spent years analyzing different cell types in the retina, the light-sensitive layer of tissue lining the inner surface of the eye that mediates the first stages of visual processing. The results of his research are published today in the journal Developmental Cell.

Using a rodent model, Keeley and his colleagues quantified the number of cells present in each retina for 12 different retinal cell types across 30 genetically distinct lines of mice. For every cell type the team investigated, the researchers found a remarkable degree of variation in cell number across the strains. More surprising, the variation in the number of different cell types was largely independent of one another across the strains. This has substantial implications for retinal wiring during cellular development.

"These cells are connected to each other, and their convergence ratios are believed to underlie various aspects of visual processing," Keeley explained, "so it was expected that the numbers of these cell types might be correlated. But that was not the case at all. We found very few significant correlations and even the ones we did find were modest."

Using quantitative trait locus (QTL) analysis a statistical method that links two types of information, in this case cell number and genetic markers Keeley's team compared not only the covariance between different types of cells but also the genetic co-regulation of their number. When they mapped the variation in cell number to locations within the genome, the locations were rarely the same for different types of cells. The result was entirely unexpected.

"Current views of retinal development propose that molecular switches control the alternate fates a newborn neuron should adopt, leading one to expect negative correlations between certain cell types," said Reese, who is also a professor in UCSB's Department of Psychological and Brain Sciences. "Still others have proposed that synaptically connected nerve cells 'match' their pre- and post-synaptic numbers through a process of naturally occurring cell death, leading one to expect positive correlations between connected cell types. Neither expectation was borne out."

"If the cell types are not correlated, then some mice will have retinas with a lot of one cell type say, photoreceptors but not a lot of another cell type to connect to, in this case bipolar cells, or vice versa," Keeley added. "So how does the developing retina accommodate this variation?"

The authors posit that since the ratios of pre- to post-synaptic cell number are not precisely controlled, the rules for connecting them should offer a degree of plasticity as they wire their connections during development.

Take bipolar cells as an example. To test this assumption, the scientists looked at the morphology of their dendrites, the threadlike extensions of a neuron that gather synaptic input. Keeley and coworkers examined their size, their branching pattern and the number of contacts they formed as a function of the number of surrounding bipolar cells and the number of photoreceptors across these different strains.

"We found that the extent of dendritic growth was proportional to the local density of bipolar cells," Keeley explained. "If there are more, they grow smaller dendrites. If there are fewer, they grow larger dendrites.

"Photoreceptor number, on the other hand, had no effect upon the size of the dendritic field of the bipolar cells but determined the frequency of branching made by those very dendrites," he added. "This plasticity in neural circuit assembly ensures that the nervous system modulates its connectivity to accommodate the independent variation in cell number."

This research gives scientists an idea of how individual cell types are generated, how they differentiate and how they form appropriate connections with one another. Researchers in the Reese lab are trying to understand the genes that control these processes.

"I think that's important when we discuss cellular therapeutics such as transplanting stem cells to replace cells that are lost," Keeley said. "We're going to need this sort of fundamental knowledge about neural development to promote the differentiation and integration of transplanted stem cells. This focus on genetic and cellular mechanisms is going to be important for developing new therapies to treat developmental disorders affecting the eye."


'/>"/>

Contact: Julie Cohen
julie.cohen@ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert  

Related medicine news :

1. Exploring a legal and ethical gray area for people with dementia
2. Nuanced Media Client, Andrea Blatterg of of ABC Senior Placement Advisors Presents: Wildflower Group’s November Event, "Exploring the Allure of Senior Living"
3. EmpowHER’s Michelle King Robson Announces Launch of HER Radio – Exploring all things Woman
4. Sofia University Hosts Exploring O’Sensei’s Aikido & Zen Calligraphy Workshop
5. Agenda Announced for the BioTechniques 2013 Virtual Symposium on Exploring the Modern Lab
6. Outlook with Ben Kingsley Exploring Sports Injuries in Children
7. Outlook with Ben Kingsley Exploring Role of Nanotechnology in Medicine for Upcoming Report
8. Cola and honey: Exploring food riddles in rhythm disturbances
9. Impact with Martin Sheen Exploring Molecular Medicine in a New Report
10. Yeast Infection No More: Review Exploring Linda Allen's Holistic Yeast Infection Treatment Released
11. Registration Opens for the 2013 BioTechniques Virtual Symposium—Exploring the Modern Lab
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Exploring how the nervous system develops
(Date:6/25/2016)... ... , ... "With 30 hand-drawn hand gesture animations, FCPX users can easily customize ... Pixel Film Studios. , ProHand Cartoon’s package transforms over 1,300 hand-drawn pictures into ... Simply select a ProHand generator and drag it above media or text in the ...
(Date:6/25/2016)... Oklahoma City, Oklahoma (PRWEB) , ... June 25, ... ... to helping both athletes and non-athletes recover from injury. Recently, he has implemented ... for the Oklahoma City area —Johnson is one of the first doctors to ...
(Date:6/24/2016)... Angeles, CA (PRWEB) , ... June 24, 2016 , ... ... surgery procedures that most people are unfamiliar with. The article goes on to state ... procedures, but also many of these less common operations such as calf and cheek ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Marcy was in a crisis. Her son ... lash out at his family verbally and physically. , “When something upset him, he couldn’t ... would use it. He would throw rocks at my other children and say he was ...
(Date:6/24/2016)... ... June 24, 2016 , ... Dr. Amanda Cheng, an ... Dr. Cheng has extensive experience with all areas of orthodontics, including robotic Suresmile ... orthodontics. , Micro-osteoperforation is a revolutionary adjunct to orthodontic treatment. It can ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)...  Arkis BioSciences, a leading innovator in the ... cerebrospinal fluid treatments, today announced it has secured ... led by Innova Memphis, followed by Angel Capital ... Arkis, new financing will accelerate the commercialization of ... of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... -- In a startling report released today, National Safety Council ... comprehensive, proven plan to eliminate prescription opioid overdoses. Prescription ... are tackling the worst drug crisis in recorded U.S. history, assigned ... Kentucky , New Mexico , ... 28 failing states, three – Michigan , ...
(Date:6/23/2016)... 23, 2016 Bracket , a leading clinical ... generation clinical outcomes platform, Bracket eCOA (SM) 6.0, at ... 26 – 30, 2016 in Philadelphia , ... Outcome Assessment product of its kind to fully integrate with ... Bracket eCOA 6.0 is a flexible platform for electronic clinical ...
Breaking Medicine Technology: