Navigation Links
Enzyme corrects more than 1 million faults in DNA replication

Scientists from the Medical Research Council (MRC) Institute of Genetics and Molecular Medicine (IGMM) at the University of Edinburgh have discovered an enzyme that corrects the most common mistake in mammalian DNA.

The mistake is the inclusion of individual bits of RNA within the DNA sequence, which the researchers found occurs more than a million times in each cell as it divides. The findings, published in Cell, suggest the RNase H2 enzyme is central to an important DNA repair mechanism necessary to protect the human genome.

Each time a cell divides it must first make an identical copy of its entire genetic material, known as the genome. During this process, which is called DNA replication, the integrity of the genetic code is safeguarded by cellular 'proofreading' and error checking mechanisms.

But sometimes mistakes creep into the genetic code, which if not corrected could lead to genetic disease or cancer. Accidental incorporation of RNA is one such mistake. The individual building blocks of RNA (ribonucleotides) are very similar to those that make up DNA, however, they are much less stable and if they remain incorporated in DNA they cause harmful breaks in the double helix. Such breaks are common in cancer cells.

The researchers made the discovery while working on a rare childhood auto-immune disease known as Aicardi-Goutires syndrome, which is caused by mutations in the RNase H2 genes. It leads to inflammation of the brain soon after birth and can be fatal within the first few years of life.

To study this condition in more detail, the scientists knocked out one of the RNase H2 genes in mice. They found that without the enzyme, the developing mouse embryos accumulated more than 1,000,000 single embedded bits of RNA in the genome of every cell, resulting in instability of their DNA.

Dr Andrew Jackson from the MRC IGMM at the University of Edinburgh, who led the research, said:

"The most amazing thing is that by working to understand a rare genetic disease, we've uncovered the most common fault in DNA replication by far, which we didn't even start out looking for! More surprising still is that a single enzyme is so crucial to repairing over a million faults in the DNA of each cell, to protect the integrity of our entire genetic code.

"We expect our findings to have broad implications in the fields of autoimmunity and cancer in the future, but first we need to find out more about what effect the incorporation of RNA nucleotides is actually having on the genome."

Professor Nick Hastie, director of the MRC IGMM at the University of Edinburgh, said:

"This study is a fantastic example of clinicians working alongside laboratory scientists towards a shared goal of improving our understanding of human health and disease. Such progress would not be possible without the critical mass of scientists at the IGMM, with capabilities in many key areas coupled with access to patient data and clinical expertise."

Contact: Hannah Isom
University of Edinburgh

Related medicine news :

1. Natural enzyme provides potential new approach for treating graft-vs.-host disease
2. Enzyme that flips switch on cells sugar cravings could be anti-cancer target
3. Regulatory enzyme overexpression may protect against neurodegeneration in Huntingtons disease
4. An enzyme in fish can demonstrate environmental toxins
5. Live-action films of worm sperm help researchers track critical fertility enzymes
6. Researchers identify enzyme that regulates degradation of damaged proteins
7. High-fat diet and lack of enzyme can lead to heart disease in mice
8. Inhibiting key enzymes kills difficult tumor cells in mice
9. Disorderly enzyme is key for antibody diversity
10. New Delhi metallo-beta-lactamase-1 enzyme acquired in Canada
11. Enzyme may drive breast cancer growth
Post Your Comments:
(Date:10/13/2017)... (PRWEB) , ... October 13, 2017 , ... Yisrayl Hawkins, ... week that explains one of the most popular and least understood books in the ... cryptic and puzzling descriptions that have baffled scholars for centuries. Many have tossed it ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... services for healthcare compliance program management, will showcase a range of technology and ... for Assisted Living (NCAL) Convention and Expo to be held October 14–18, 2017 ...
(Date:10/12/2017)... ... , ... The American College of Medical Informatics (ACMI) will present the 2017 ... Session of AMIA’s Annual Symposium in Washington, D.C. AMIA’s Annual Symposium is ... pioneer in the field of medical informatics, this prestigious award is presented to an ...
(Date:10/12/2017)... ... October 12, 2017 , ... Leading pediatric oncology experts at Children’s National ... 49th Congress of the International Society of Paediatric Oncology (SIOP) Oct. 12-15. ... for Cancer and Blood Disorders at Children’s National, and Stephen P. Hunger, M.D., ...
(Date:10/12/2017)... ... 12, 2017 , ... Vohra Chief Medical Officer Dr. Shark ... skilled nursing facility medical directors and other clinicians at various events in October. ... "At many of these conferences we get to educate other physicians, facility nurses, ...
Breaking Medicine News(10 mins):
(Date:9/28/2017)... Sept. 28, 2017 Cohen Veterans Bioscience and ... use of wearable and home sensors for real-time monitoring ... Signal Foundation, a nonprofit organization focused on disruptive health ... an affordable analytical system to record and integrate behavioral, ... ...
(Date:9/25/2017)... 25, 2017  EpiVax, Inc., a leader in ... immune-engineering today announced the launch of EpiVax Oncology ... personalized therapeutic cancer vaccines. EpiVax has provided $500,000 ... to enabling technologies to the new precision immunotherapy ... EpiVax Oncology as Chief Executive Officer. Gad brings ...
(Date:9/19/2017)... HistoSonics, Inc., a venture-backed medical device company developing a non-invasive, robotically assisted, platform ... leadership team developments today:   ... ... Tom Tefft ... Veteran medical device executive Josh Stopek , PhD, who has led ...
Breaking Medicine Technology: