Navigation Links
Engineers use blood's hydrodynamics to manipulate stem, cancer cells

A tiny, implantable device has pulled adult stem cells out of a living rat with a far greater purity than any present technique.

The test of the device designed by Michael R. King, associate professor of biomedical engineering at the University of Rochester, will be reported in the March 3 issue of the British Journal of Haematology.

Its the kind of research that, before we tried it, we never would have expected such a remarkable result straight out of the gate, says King. Were finding we can play off the hydrodynamics of moving blood to isolate and manipulate specific cell populations with great efficiency.

King is at the forefront of a new field; manipulating stem cells, white blood cells, and even cancer cells by exploiting the mechanics of the cells movement with such precision that he is having success capturing and even reprogramming several cell types as they pass through the device, he says.

A chance encounter between an engineer and a hematology clinician gave rise to the field in 2002.

King was studying how certain white blood cells, called neutrophils, know how to migrate to a point of infection. He observed how, near an injury site, the walls of the nearby blood vessels expressed an adhesive protein called a selectin, and if passing neutrophils brushed against these selectins, they stuck to the vessel wall.

But the cells did not remain stuckthey rolled. With a precise balance between the adhesion of the selectins and the forces of the flowing bloodstream, the cells could move much more slowly as they approached the infection site. With that slowed pace, the cell can look for a second signal on the vessel wall that tells the cell to exit the vessel by squeezing between cells in the wall and moving directly to the site of infection.

One reason the system is so effective is that only the neutrophils respond to those selectins, so only neutrophils slow down in the blood.

King was working out the physical dynamics of this neutrophil rolling in his office one day when Jane Liesveld, a hematology clinician doing work on bone marrow stem cells at the University of Rochester, walked by and noticed a poster of Kings work in the hallway outside his office.

She dropped in and said, I have a pretty plentiful source of primary stem cells from patients. Can you think of any biophysical research to do with that" says King. The stem cell angle just fell from the sky.

As King worked with Liesveld he found that the basic rolling mechanism was the foundation of a number of other processes, including stem cell transplantationa natural phenomenon where stem cells move in and out of bone tissue via the blood. In 2004, he found that he could coat a material with specific adhesive selectins and capture living stem cells. This collaboration resulted in two human stem cell papers published just within the last month: in Biotechnology Progress (Charles et al., 2007) and Clinical Chemistry (Narasipura et al., 2007).

In the new British Journal of Haematology paper, King and colleagues show they can take the process a step further by implanting the device in a living rat with the selectin coating remaining active for 1-2 hours. When the tube was removed, King found hed indeed captured cells straight out of the bloodstream, including contaminantsnon-stem cellsas expected. What he didnt expect was how many of the cells were viable stem cells.

I was astounded, says King. More than 25 percent of the sample was stem cells. Its amazing because even when you use drugs to increase the number of free stem cells in the blood, they still only make up less than 1 percent of all cells. If you use traditional methods to collect stem cells, centrifuging the rats blood, even in these drug-treated rats you might get 3 or 4 percent stem cellsmeaning only 3 or 4 percent of the cells you obtain are stem cells.

King points out that centrifugal methods currently produce an overall higher stem cell yield because they start with far more blood material, but he believes his microscale device can be scaled up to significantly larger capacity.

King is even more enthusiastic about his work in reprogramming cells that pass through his device. As the cell rolls across the adhesive surface, it can be forced to contact other proteins on the surface. King says these proteins can be designed to steer a stem cells development, forcing it to become a specific type of blood, bone, or muscle cell.

King hopes someday an implantable device could continuously reprogram errant neutrophils, but he is already hard at work on a device that holds the same promise for cancerous cells.

Cancer cells use the same rolling mechanism to travel around the body and lodge in interstitial tissue, so King has already focused on isolating the selectins that cancer cells respond to. His lab is working to create a microscale tube that might attract cancer cells and use permanent receptor-mediated triggering proteins to reprogram them to self-destruct. With his microscale tube device, King has already verified that he can control the rolling adhesion of various types of cancer cells, including leukemias, prostate, retinoblastoma, and colorectal cancer cells.

One of our ultimate goals is to develop an implantable device that will selectively remove metastatic cells from the blood, says King. Those cells can predate detectable tumors by years, so we might catch them before they become dangerous.


Contact: Jonathan Sherwood
University of Rochester

Related medicine news :

1. Engineers developing new cements to heal spinal fractures
2. SMRT Architects and Engineers Selected to Design New $115M Digital X-Ray Manufacturing Facility for GE Healthcare
3. Microchip-based device can detect rare tumor cells in bloodstream
4. Microchip Spots Stray Tumor Cells in the Bloodstream
5. CoolTouch Introduces CoolLipo(TM) Laser System, Recently FDA Cleared for Laser-Assisted Lipolysis
6. Conventional prognostic factors fail to explain better prostate cancer survival in most Asian men
7. Survival differences by race most apparent in advanced stages of breast cancer
8. MRI finds breast cancer before it becomes dangerous
9. Investigators uncover intriguing clues to why persistent acid reflux sometimes turns into cancer
10. Pathway links inflammation, angiogenesis and breast cancer
11. Radiologists encouraged to look beyond cancer for clinically unseen diseases
Post Your Comments:
(Date:11/29/2015)... ... November 29, 2015 , ... Doctors who missed a case of ... the signs of mesothelioma and push for a diagnosis, especially in people exposed to ... Click here to read it now. , Researchers at Gifu Prefectural Tajimi ...
(Date:11/28/2015)... California (PRWEB) , ... November 28, 2015 , ... ... image exchange technology and teleradiology services, has added Chris Hafey and Claude Hooton ... exhibit at the Radiological Society of North America (RSNA) 2015 Annual Meeting and ...
(Date:11/28/2015)... ... November 28, 2015 , ... Pixel Film Studios is back again with ... from, the possibilities are endless. Users have full control over angle of view, speed ... effects, users are sure to get heads to turn. , ProPanel: Pulse offers fully ...
(Date:11/27/2015)... ... , ... According to an article published November 15th by ABC ... security in light of the recent terrorist attacks in Paris, other cities are taking ... attack from reaching U.S. soil. Especially around special events that may be high-profile in ...
(Date:11/27/2015)... ... 27, 2015 , ... "When I was traveling, I was ... N.J. "Many people catch diseases simply from sitting on such dirty toilet seats. ... from germs." , He developed the patent-pending QUDRATECS to eliminate the need to ...
Breaking Medicine News(10 mins):
(Date:11/27/2015)... , Nov. 27, 2015 Research and Markets ... "Global Intrauterine Devices Market 2015-2019" report to ... --> In this report, the author the present ... market for 2015-2019. To calculate the market size, the ... type of products: Hormonal IUDs and copper IUDs. The ...
(Date:11/26/2015)... the Netherlands , November 26, 2015 ... A new combination approach blends immunotherapy with ... A new combination approach blends immunotherapy with Bremachlorin-photodynamic ... A new combination approach blends immunotherapy with Bremachlorin-photodynamic ... the Netherlands has found that immunotherapy can ...
(Date:11/26/2015)... Nov. 26, 2015 Research and Markets ... the "2016 Future Horizons and Growth Strategies ... Supplier Shares, Country Segment Forecasts, Competitive Intelligence, Emerging ... --> --> This ... the Japanese therapeutic drug monitoring market, including emerging ...
Breaking Medicine Technology: