Navigation Links
Engineers turn noise into vision
Date:4/2/2010

A new technique for revealing images of hidden objects may one day allow pilots to peer through fog and doctors to see more precisely into the human body without surgery.

Developed by Princeton engineers, the method relies on the surprising ability to clarify an image using rays of light that would typically make the image unrecognizable, such as those scattered by clouds, human tissue or murky water.

In their experiments, the researchers restored an obscured image into a clear pattern of numbers and lines. The process was akin to improving poor TV reception using the distorted, or "noisy," part of the broadcast signal.

"Normally, noise is considered a bad thing," said Jason Fleischer, an assistant professor of electrical engineering at Princeton. "But sometimes noise and signal can interact, and the energy from the noise can be used to amplify the signal. For weak signals, such as distant or dark images, actually adding noise can improve their quality."

He said the ability to boost signals this way could potentially improve a broad range of signal technologies, including the sonograms doctors use to visualize fetuses and the radar systems pilots use to navigate through storms and turbulence. The method also potentially could be applied in technologies such as night vision goggles, inspection of underwater structures such as levies and bridge supports, and in steganography, the practice of masking signals for security purposes.

The findings were reported online March 14 in Nature Photonics.

In their experiments, Fleischer and co-author Dmitry Dylov, an electrical engineering graduate student, passed a laser beam through a small piece of glass engraved with numbers and lines, similar to the charts used during eye exams. The beam carried the image of the numbers and lines to a receiver connected to a video monitor, which displayed the pattern.

The researchers then placed a translucent piece of plastic similar to cellophane tape between the glass plate and the receiver. The tape-like material scattered the laser light before it arrived at the receiver, making the visual signal so noisy that the number and line pattern became indecipherable on the monitor, similar to the way smoke or fog might obstruct a person's view.

The crucial portion of the experiment came when Fleischer and Dylov placed another object in the path of the laser beam. Just in front of the receiver, they mounted a crystal of strontium barium niobate (SBN), a material that belongs to a class of substances known as "nonlinear" for their ability to alter the behavior of light in strange ways. In this case, the nonlinear crystal mixed different parts of the picture, allowing signal and noise to interact.

By adjusting an electrical voltage across the piece of SBN, the researchers were able to tune in a clear image on the monitor. The SBN gathered the rays that had been scattered by the translucent plastic and used that energy to clarify the weak image of the lines and numbers.

"We used noise to feed signals," Dylov said. "It's as if you took a picture of a person in the dark, and we made the person brighter and the background darker so you could see them. The contrast makes the person stand out."

The technique, known as "stochastic resonance," only works for the right amount of noise, as too much can overwhelm the signal. It has been observed in a variety of fields, ranging from neuroscience to energy harvesting, but never has been used this way for imaging.

Based on the results of their experiment, Fleischer and Dylov developed a new theory for how noisy signals move through nonlinear materials, which combines ideas from the fields of statistical physics, information theory and optics.

The research was funded by the National Science Foundation, the U.S. Department of Energy and the U.S. Air Force.

Their theory provides a general foundation for nonlinear communication that can be applied to a wide range of technologies. The researchers plan to incorporate other signal processing techniques to further improve the clarity of the images they generate and to apply the concepts they developed to biomedical imaging devices, including those that use sound and ultrasound instead of light.


'/>"/>

Contact: Chris Emery
cemery@princeton.edu
609-258-4597
Princeton University, Engineering School
Source:Eurekalert

Related medicine news :

1. Nanoscale stealth probe slides into cell walls seamlessly, say Stanford engineers
2. Artists, Product Designers, Printing Gurus, Game Developers, Manufacturing Engineers Will Converge at RAPID 2010/3D IMAGING Conference/Expo, May 18-20 in LA
3. Engineers: New sensor could help treat, combat diabetes, other diseases
4. Free Seminars to Help Employers Prevent Noise-Induced Hearing Loss Among Workers Set for Phoenix, Reno, Salt Lake City, Denver in May
5. How do you improve mammogram accuracy? Add noise
6. Slumdog Millionaire Put Spotlight on Slums in Developing World Now, Health Visionary Helps Turn Urban Blight into Hope
7. HCG True Diet – Dr. Robert True Speaks About the Importance of Medical Supervision for HCG Diets
8. Alzheimers Foundation of America Hails Significant Provisions for Dementia Community in Health Reform Law
9. TrainingIndustry.com names Corporate Visions as Top 20 Sales Training Firm
10. National Restaurant Association Says Nutrition Information Provision Is Win for Consumers and Restaurants
11. CCH Briefing Highlights Employer, Medicare Provisions of Health Care Reform Proposals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... June 27, 2016 , ... "FCPX editors can now reveal ... Final Cut Pro X," said Christina Austin - CEO of Pixel Film Studios. ... Cut Pro X users can now reveal the media of their split screens ...
(Date:6/27/2016)... ... June 27, 2016 , ... A revolution is underway. ... transport experience for the millions of people who require these medical transport services ... industry through the use of technology. Now, SmartEMS has put forth an industry-changing ...
(Date:6/26/2016)... Michigan (PRWEB) , ... June 26, 2016 , ... On ... as sponsor of the 2016 Cereal Festival and World’s Longest Breakfast Table in Battle ... honor of the city’s history as home to some of the world’s leading providers ...
(Date:6/26/2016)... ... June 26, 2016 , ... Brent Kasmer, a legally blind and certified personal trainer is helping ... fitness app. The fitness app plans to fix the two major problems leading the fitness ... size fits all type program , They don’t eliminate all the reasons people ...
(Date:6/25/2016)... ... ... Austin residents seeking Mohs surgery services, can now turn to Dr. Jessica Scruggs ... for medical and surgical dermatology. , Dr. Dorsey brings specialization to include Mohs surgery, ... Micrographic Surgery completed by Dr. Dorsey was under the direction of Glenn Goldstein, MD, ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... , June 24, 2016 Dehaier Medical ... the "Company"), which develops, markets and sells medical devices ... , signed a strategic cooperation agreement with Hongyuan ... "Hongyuan Supply Chain") on June 20, 2016, to develop ... the strategic cooperation agreement, Dehaier will leverage Hongyuan Supply ...
(Date:6/24/2016)... June 24, 2016 Research and Markets ... for Companion Diagnostic Tests" report to their offering. ... Companion Diagnostics The World Market for Companion ... medicine diagnostics. Market analysis in the report includes the following: ... (In Vitro Diagnostic Kits) by Region (N. America, EU, ROW), ...
(Date:6/24/2016)... Mass. , June 24, 2016   Pulmatrix, ... pharmaceutical company developing innovative inhaled drugs, announced today that ... Russell Investments reconstituted its comprehensive set of ... "This is an important milestone for Pulmatrix," ... will increase shareholder awareness of our progress in developing ...
Breaking Medicine Technology: