Navigation Links
Drug target identified for common childhood blood cancer
Date:7/31/2014

In what is believed to be the largest genetic analysis of what triggers and propels progression of tumor growth in a common childhood blood cancer, researchers at NYU Langone Medical Center report that they have identified a possible new drug target for treating the disease.

T-cell acute lymphoblastic leukemia is one of the most common and aggressive childhood blood cancers. An estimated quarter of the 500 adolescents and young adults diagnosed with the cancer each year in the U.S. fail to achieve remission with standard chemotherapy drugs.

In a cover-story report set to appear in the journal Cell online July 31, the NYU Langone team describes how they used advanced genetic scanning techniques to identify 6,023 so-called long, non-coding strands of RNA, vital chemical cousins of DNA, that were active in the immune system T cells taken from 15 boys and girls with T-cell acute lymphoblastic leukemia, but not active in the healthy T cells in three young people without the disease.

Further analysis found that chemically blocking the action of one of those non-protein-producing RNAs, known as leukemia-induced non-coding activator RNA-1, or LUNAR1 for short, stalled leukemia progression.

Study investigators say LUNAR1 was not singled out from RNA typically used by DNA to make proteins, but rather from among the most prevalent RNA long chemical strands of translated DNA, previously termed "junk DNA" which can help transcribe DNA but never fully assemble proteins. They say these long non-coding RNAs are increasingly recognized as key to regulating many cell functions.

Senior study investigator and NYU Langone cancer biologist Iannis Aifantis, PhD, says the study offers preliminary evidence that drugs blocking LUNAR1 could treat T-cell acute lymphoblastic leukemia and a long-sought alternative to chemotherapeutic drugs that kill both cancer and normal cells.

Aifantis, a professor and chair of pathology at the Laura and Isaac Perlmutter Cancer Center at NYU Langone, and an early career scientist at the Howard Hughes Medical Institute, also says LUNAR1 could aid in diagnosing the blood cancer.

"Our study shows that LUNAR1 is highly specific for T-cell acute lymphoblastic leukemia and plays a key role in how this cancer develops," he says, pointing out that overproduction of LUNAR1 was recorded in almost all (90 percent) of leukemia patients tested.

Moreover, Aifantis says, his team's latest findings suggest that development of future cancer therapies based on the underlying genetics of each patient should involve "not just mutations in someone's DNA, but also alterations in the makeup of RNA."

Among the study's other key findings was that while LUNAR1 does not produce cancerous proteins on its own, its production was essential to the cell-to-cell signaling action of another protein, insulin-like growth factor 1 receptor (IGF-1R), already tied to many cancers, including leukemia.

Further laboratory experiments showed that the gene coding for LUNAR1 is near the gene for IGF-1R and located toward the chromosomes' ends, known as telomeres. When activated, LUNAR1's position allows it to chemically loop back and, in turn, bind to and activate IGF-1R.

Researchers zeroed in on LUNAR1 by pinpointing those RNAs that also were active in the NOTCH1 biological pathway. They say the NOTCH1 pathway is common to many cancers, but is especially active in at least half of all people with T-cell acute lymphoblastic leukemia. LUNAR1 stood out right away, they say, as the most highly expressed long, non-coding RNA, of which more than half were newly discovered.

According to Aifantis, his team's research shows that T-cell acute lymphoblastic leukemia, as is the case in many other cancers, could be simply described as a condition of "too much errant signaling." He says in normal T cells, the long, non-coding RNAs such as LUNAR1 are not transcribed, NOTCH1 is inactive, and there is no looping back of LUNAR1 to activate IGF-1R.

To confirm their findings, researchers also transplanted human leukemia T cells into mice to prompt tumor growth, and chemically blocked LUNAR1 in some of the animals. Tumor growth stalled only in those mice whose LUNAR1 was inactivated.

Aifantis says his team's next steps are to develop more effective inhibitors of LUNAR1, preferably something that would precisely target any one or more of its 200-plus component nucleotides.


'/>"/>

Contact: David March
david.march@nyumc.org
212-404-3528
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related medicine news :

1. Targeted therapeutics for colon cancer to be presented at AACR meeting
2. First targeted nanomedicine to enter human clinical studies
3. SMART heart eases heart ache, targets cardiac patients emotional well-being
4. Target set on cancer gene MCL1
5. Scientists tailor cell surface targeting system to hit organelle ZIP codes
6. IBN discovers human neural stem cells with tumor targeting ability
7. A closer look at PARP-1 reveals potential new drug targets
8. Highly targeted irradiation as good as whole breast radiotherapy in early stage cancer
9. Breathing during radiotherapy - how to hit the treatment target without causing collateral damage
10. Scientists identify new target to battle rheumatoid arthritis
11. Scientists identify possible drug target for acute pancreatitis
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... ... June 25, 2016 , ... Austin residents seeking Mohs surgery ... of Mohs Surgery and to Dr. Russell Peckham for medical and surgical dermatology. , ... for skin cancer. The selective fellowship in Mohs Micrographic Surgery completed by Dr. Dorsey ...
(Date:6/25/2016)... Oklahoma City, Oklahoma (PRWEB) , ... June 25, ... ... to helping both athletes and non-athletes recover from injury. Recently, he has implemented ... for the Oklahoma City area —Johnson is one of the first doctors to ...
(Date:6/24/2016)... ... , ... June 19, 2016 is World Sickle Cell Observance Day. In an ... of holistic treatments, Serenity Recovery Center of Marne, Michigan, has issued a ... Cell Disease (SCD) is a disorder of the red blood cells, which can cause ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Comfort Keepers® ... American Cancer Society and the Road To Recovery® program to drive cancer patients to ... and other adults to ensure the highest quality of life and ongoing independence. ...
(Date:6/24/2016)... Vegas, Nevada (PRWEB) , ... June 24, 2016 ... ... Las Vegas client, The Grove Investment Group (TGIG), has initiated cultivation and processing ... Grove, in Las Vegas and Pahrump, Nevada. , Puradigm is the manufacturer of ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... June 24, 2016  Arkis BioSciences, a leading ... and more durable cerebrospinal fluid treatments, today announced ... Series-A funding is led by Innova Memphis, followed ... other private investors.  Arkis, new financing will accelerate ... the market release of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... Any dentist who has made an implant supported ... Many of them do not even offer this as a ... laboratory costs involved. And those who ARE able to offer ... high cost that the majority of today,s patients would not ... Zadeh , founder of Dental Evolutions Inc. and inventor of ...
(Date:6/23/2016)... INDIANAPOLIS , June 23, 2016 Roche ... received 510(k) clearance for its Elecsys BRAHMS PCT (procalcitonin) ... severe sepsis or septic shock. With this clearance, Roche ... provide a fully integrated solution for sepsis risk assessment ... associated with bacterial infection and PCT levels in blood ...
Breaking Medicine Technology: