Navigation Links
Discovery may aid search for anti-aging drugs
Date:8/18/2010

ANN ARBOR, Mich. A team of University of Michigan scientists has found that suppressing a newly discovered gene lengthens the lifespan of roundworms. Scientists who study aging have long known that significantly restricting food intake makes animals live longer. But the goal is to find less drastic ways to achieve the same effect in humans someday. The U-M results offer promising early evidence that scientists may succeed at finding targets for drugs that someday could allow people to live longer, healthier lives.

In a study in the August issue of Aging Cell, U-M scientists found that a gene, drr-2, is an important component in a key cellular pathway, the TOR nutrient-sensing pathway, where many scientists are looking for potential drug targets. The U-M scientists then found that when they caused the drr-2 gene to be under- or over-expressed, they could lengthen or shorten lifespan in C. elegans, a worm widely used in research. Manipulating the drr-2 gene's action produced the same effects as reducing or increasing caloric intake.

"We showed that in C. elegans, drr-2 is one of the essential genes for the TOR pathway to modulate lifespan," says Ao-Lin Allen Hsu, Ph.D., the study's senior author and a scientist at the U-M Geriatrics Center. He also is an assistant professor in internal medicine and molecular and integrative physiology at U-M. The study also found that drr-2 appears analogous to a human gene, eIF4H, that controls similar cell functions.

Context

To find possible avenues for future anti-aging drugs, many scientists around the world are focusing on signaling pathways in cells that sense nutrients. The one Hsu examined, the target of rapamycin pathway or TOR pathway, is so named because its activity can be influenced by the drug rapamycin. Recent results from a large federal study being conducted at U-M and elsewhere have shown that in mice, rapamycin is effective at mimicking the anti-aging effects of dietary restriction.

Research in the last 25 years has shown that animals, including mammals, live longer and have lower levels of certain measures of age-related decline when scientists have restricted their food intake. No one has been able to show yet that the same effect happens in humans, though some studies are under way.

When calories or certain nutrients are restricted, scientists detect less oxidative damage in animal cells and a slower decline in DNA repair, a decline that normally occurs with age. It's thought that limiting oxidative damage and slowing the decline in DNA repair could help postpone or avoid many age-related diseases.

But scientists know relatively little about why reducing food intake causes these effects. In the last 10 years, they have made progress in identifying genes and associated proteins that are suppressed when diet is restricted. By learning more about the cell processes involved, they may be able to discover targets for future drugs that could delay aging without the need to restrict food intake.

Drugs tailored to block specific genes or proteins involved in nutrient-sensing pathways would have much more appeal than reducing what one eats. To achieve anti-aging benefits, it's thought that people would have to restrict food intake by 30 to 40 percent, a grim prospect. In addition, drugs might be designed to avoid other disadvantages of this level of dietary restriction, which include reduced fertility.

C. elegans is a tiny roundworm, a nematode whose two-week lifespan is a great advantage for scientists studying aging. The 1-millimeter-long transparent worms have other advantages, too. C. elegans exhibits many age-associated changes observed in higher organisms.

"Many genes identified in C. elegans to control the speed of aging turned out to be evolutionarily conserved, meaning that you can find them in other animals, too. And many are very similar to those found in humans," Hsu says.

Research details

Hsu and his team created different mutant strains of roundworms, some with drr-2 genes silenced and others in which the gene was over-expressed. They wanted to learn whether inactivating drr-2 is essential for TOR to influence longevity, and found that it was. Other newly discovered genes may affect TOR signaling as well. But Hsu's team has found a promising lead for anti-aging drugs of the future: They were able to show that silencing drr-2's action alone was sufficient to make worms live longer than wild-type C. elegans used as controls.

"It is known that reduction of TOR signaling in response to a change in the environment or genetic manipulation triggers a cascade of cellular signals that alter cell growth, metabolism, and protein synthesis, and decrease the pace of aging," says Hsu. "Our recent studies have shown that drr-2 might play a pivotal role in the TOR signaling network to control protein synthesis as well as longevity."


'/>"/>

Contact: Anne Rueter
arueter@umich.edu
734-764-2220
University of Michigan Health System
Source:Eurekalert

Related medicine news :

1. Discovery Moves Use of Stone Tools Back 800,000 Years
2. New discovery brings hope to treatment of incurable blood cancer
3. Discovery Opens Door for New Options in Prevention and Treatment of Mesothelioma
4. Discovery of Napoleon Hill Book Bound to Change Fate for Millions
5. B2Discovery: Entrepreneurs and researchers join forces to conquer cancer
6. Sun-induced skin cancer: new discovery permits doctors to assess genetic risk
7. U of A discovery offers promising research for spinal-cord injury treatments
8. Discovery of Stem Cell Illuminates Human Brain Evolution, Points To Therapies
9. Gene discovery potential key to cost-competitive cellulosic ethanol
10. ACS Webinar focuses on drug discovery process for small molecule therapeutics
11. Discovery could help diabetics and others with slow-to-heal wounds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/31/2016)... ... ... More than 80 representatives of the Hepatitis B Foundation , Hepatitis ... an event on National Hepatitis Testing Day outside of Philadelphia City Hall to raise ... of liver cancer. , Foundation leaders and the citywide coalition they created, Hep B ...
(Date:5/31/2016)... ... May 31, 2016 , ... ... Houston Healthconnect’s (Healthconnect) regional health information exchange, which enables physicians at SJMC’s two ... their patients from other participating organizations in the exchange. SJMC’s membership in the ...
(Date:5/31/2016)... ... May 31, 2016 , ... ... Corporation, he knew it was something that contractors should have at their disposal ... it gets,” says Butch, CertainTeed’s Director of Contractor Programs. , As a ...
(Date:5/31/2016)... ... May 31, 2016 , ... Spartan Bioscience today introduced the ... and convenience. , The Cube is exceptionally small—it takes up the space of ... easily into any space, whether in a hospital, doctor’s office, or pharmacy. , ...
(Date:5/31/2016)... ... May 31, 2016 , ... Like jewels in a crown, the multiple awards ... is home to Ontario’s leading day spa and one of Canada’s few accredited 5 ... a unique concept to combine spa services with hair and beauty services ...
Breaking Medicine News(10 mins):
(Date:5/31/2016)... JACKSON, Mich. , May 31, 2016 /PRNewswire/ ... a market-leading provider of anesthesia information management systems ... Doug Marcey as Vice President of ... establish and lead all aspects of the company,s ... and Plexus TG customers to determine the expansion ...
(Date:5/31/2016)... May 31, 2016 Aloe vera ... food, cosmetics and pharmaceuticals, with global volume to surpass ... 1.6 Bn. Demand for aloe vera extracts ... yogurts will continue its upward momentum in 2016 as ... boost positive sentiment on aloe vera, with wide-ranging applications ...
(Date:5/31/2016)... NESS ZIONA, Israel , ... a regenerative medicine company utilizing its proprietary plant-based rhCollagen ... has received authorization from the Chief Scientist of ... approximately 50% of its NIS 12 million development project ... million, measurably higher than last year,s authorized grant, which ...
Breaking Medicine Technology: