Navigation Links
Developing a modular, nanoparticle drug delivery system
Date:10/5/2007

There are two aspects to creating an effective drug: finding a chemical compound that has the desired biological effect and minimal side-effects and then delivering it to the right place in the body for it to do its job.

With the support from a $478,000, five-year CAREER award from the National Science Foundation, Eva Harth is tackling the second part of this problem. She is creating a modular, multi-functional drug delivery system that promises simultaneously to enhance the effectiveness and reduce undesirable side-effects of a number of different drugs.

(NSFs Faculty Early Career Development awards are the agencys most prestigious honor for junior faculty members and are given to individuals judged most likely to become the academic leaders of the 21st century.)

Harth, who is an assistant professor of chemistry at Vanderbilt University, has created a nanosponge specially designed to carry large numbers of drug molecules. She has also discovered a molecular transporter that, when attached to the nanosponge, carries it and its cargo across biological barriers into specific intracellular compartments, which are very difficult places for most drugs to reach. She has shown that her system can reach another difficult target: the brain. Experiments have shown that it can pass through the brain-blood barrier. In addition, she has: successfully attached a special targeting unit that delivers drugs to the surface of tumors in the lungs, brain and spinal cord and even developed a light kit for her delivery system fluorescent tags that researchers can use to monitor where it goes.

Harth has taken a different approach from other researchers working on nanotechnology for drug development. Instead of trying to encapsulate drugs in nanoscale containers, she decided to create a nanoparticle that had a large number of surface sites where drug molecules could be attached. To do so, she adopted a method that uses extensive internal cross-linking to scrunch a long, linear molecule into a sphere about 10 nanometers in diameter, about the size of a protein. Nanoparticles like this are called nanosponges.

We can really load this up with a large number of drug molecules, she says.

Working with Heidi Hamm, the Earl W. Sutherland Jr. Professor of Pharmacology at Vanderbilt, Harth synthesized a dendritic molecule with the ability to slip through cell membranes and reach the cell nucleus. They figured out how to attach this transporter to her nanoparticle and showed that the transporter can pull the nanoparticle after it into cellular compartments. They also demonstrated that the transporter can deliver large molecules specifically peptides and proteins into specific sub-cellular locations.

Peptides and proteins can act as drugs, just like smaller molecules, Harth says. However, there is not much activity in this area because people havent had a method for getting them into cells. Now that there is a way to do it, but that may change.

Hamm studies G proteins, arguably the most important signaling molecules in the cell. Scientists think that many diseases, including diabetes and certain forms of pituitary cancer, are caused by malfunctioning G proteins. She and Harth are collaborating on using the transporter to deliver peptides produced by G proteins that disrupt signaling pathways.

Evas methods for drug delivery are very novel and versatile and can be adapted to delivery of proteins, peptides, DNA and smaller chemical compounds like most drugs. The breadth of applications makes her technology very powerful, Hamm says.

The chemist is also collaborating with Dennis E. Hallahan, professor of radiation oncology at Vanderbilt, to apply the drug delivery system to fighting cancer. Hallahans lab had identified a molecule that targets a surface feature on lung carcinomas. Harth took the molecule, improved it, attached it to her nanoparticle and the two of them determined that the combination is capable of delivering drugs to the surface of lung tumors.

She is now working with Hallahan to adapt her delivery system to carry cisplatinum, a traditional chemotherapy agent that is used to treat a number of different kinds of cancer but is highly toxic and has a number of unpleasant side effects.

By delivering the anti-cancer agent directly to the cancerous tissues, Evas system decreases the adverse effects on other tissues and increases its potency by delivering a higher concentration of the drug directly on the cancer, Hallahan explains.

The people in my lab have tried at a number of different drug delivery systems and Evas works the best of those weve looked at, Hallahan says.

Vanderbilt is applying for two patents on the system.


'/>"/>

Contact: David F. Salisbury
david.salisbury@vanderbilt.edu
615-343-6803
Vanderbilt University
Source:Eurekalert

Related medicine news :

1. New antibiotic already developing resistance
2. Identifying The Risks Of Developing Schizophrenia
3. Patients With Severe Hemophilia At Risk Of Developing Osteoporosis
4. Risk Of Developing Arthritis
5. Periodontal disease may amass the risk of developing Type 2 diabetes
6. Developing HIV fighter
7. Diabetes cases could double in developing countries in next 30 years
8. Antibiotics Found To Increase The Risk Of Developing Breast Cancer
9. The Effectiveness Of Cancer Drug In Women At Risk Of Developing Cancer
10. Men Who at Risk Of Developing Prostate Cancer
11. Cancer Patients At A Greater Risk Of Developing Blood Clots
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... ... June 25, 2016 , ... Experts from the ... AcademyHealth’s Annual Research Meeting June 26-28, 2016, at the Hynes Convention Center in ... topics including advance care planning, healthcare costs and patient and family engagement. , ...
(Date:6/25/2016)... ... 2016 , ... "With 30 hand-drawn hand gesture animations, FCPX users can easily ... of Pixel Film Studios. , ProHand Cartoon’s package transforms over 1,300 hand-drawn pictures ... . Simply select a ProHand generator and drag it above media or text in ...
(Date:6/25/2016)... ... June 25, 2016 , ... Dr. Calvin Johnson ... Recently, he has implemented orthobiologic procedures as a method for treating his patients. ... the first doctors to perform the treatment. Orthobiologics are substances that orthopaedic surgeons ...
(Date:6/24/2016)... , ... June 24, 2016 , ... A recent ... most people are unfamiliar with. The article goes on to state that individuals are ... many of these less common operations such as calf and cheek reduction. The Los ...
(Date:6/24/2016)... ... ... in a crisis. Her son James, eight, was out of control. Prone to extreme mood ... something upset him, he couldn’t control his emotions,” remembers Marcy. “If there was a ... children and say he was going to kill them. If we were driving on ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... , June 24, 2016  Global Blood ... biopharmaceutical company developing novel therapeutics for the treatment ... today announced the closing of its previously announced ... stock, at the public offering price of $18.75 ... offering were offered by GBT. GBT estimates net ...
(Date:6/24/2016)... ALEXANDRIA, Va. , June 24, 2016 ... a set of recommendations that would allow ... information (HCEI) with entities that make formulary and coverage ... determine the "value" of new medicines. The ... that does not appear on the drug label, a ...
(Date:6/24/2016)... PUNE, India , June 24, 2016 ... "Pen Needles Market by Type (Standard Pen Needles, Safety ... 12mm), Therapy (Insulin, GLP-1, Growth Hormone), Mode of Purchase ... published by MarketsandMarkets, This report studies the market for ... is expected to reach USD 2.81 Billion by 2021 ...
Breaking Medicine Technology: