Navigation Links
Developing a modular, nanoparticle drug delivery system
Date:10/5/2007

There are two aspects to creating an effective drug: finding a chemical compound that has the desired biological effect and minimal side-effects and then delivering it to the right place in the body for it to do its job.

With the support from a $478,000, five-year CAREER award from the National Science Foundation, Eva Harth is tackling the second part of this problem. She is creating a modular, multi-functional drug delivery system that promises simultaneously to enhance the effectiveness and reduce undesirable side-effects of a number of different drugs.

(NSFs Faculty Early Career Development awards are the agencys most prestigious honor for junior faculty members and are given to individuals judged most likely to become the academic leaders of the 21st century.)

Harth, who is an assistant professor of chemistry at Vanderbilt University, has created a nanosponge specially designed to carry large numbers of drug molecules. She has also discovered a molecular transporter that, when attached to the nanosponge, carries it and its cargo across biological barriers into specific intracellular compartments, which are very difficult places for most drugs to reach. She has shown that her system can reach another difficult target: the brain. Experiments have shown that it can pass through the brain-blood barrier. In addition, she has: successfully attached a special targeting unit that delivers drugs to the surface of tumors in the lungs, brain and spinal cord and even developed a light kit for her delivery system fluorescent tags that researchers can use to monitor where it goes.

Harth has taken a different approach from other researchers working on nanotechnology for drug development. Instead of trying to encapsulate drugs in nanoscale containers, she decided to create a nanoparticle that had a large number of surface sites where drug molecules could be attached. To do so, she adopted a method that uses extensive internal cross-linking to scrunch a long, linear molecule into a sphere about 10 nanometers in diameter, about the size of a protein. Nanoparticles like this are called nanosponges.

We can really load this up with a large number of drug molecules, she says.

Working with Heidi Hamm, the Earl W. Sutherland Jr. Professor of Pharmacology at Vanderbilt, Harth synthesized a dendritic molecule with the ability to slip through cell membranes and reach the cell nucleus. They figured out how to attach this transporter to her nanoparticle and showed that the transporter can pull the nanoparticle after it into cellular compartments. They also demonstrated that the transporter can deliver large molecules specifically peptides and proteins into specific sub-cellular locations.

Peptides and proteins can act as drugs, just like smaller molecules, Harth says. However, there is not much activity in this area because people havent had a method for getting them into cells. Now that there is a way to do it, but that may change.

Hamm studies G proteins, arguably the most important signaling molecules in the cell. Scientists think that many diseases, including diabetes and certain forms of pituitary cancer, are caused by malfunctioning G proteins. She and Harth are collaborating on using the transporter to deliver peptides produced by G proteins that disrupt signaling pathways.

Evas methods for drug delivery are very novel and versatile and can be adapted to delivery of proteins, peptides, DNA and smaller chemical compounds like most drugs. The breadth of applications makes her technology very powerful, Hamm says.

The chemist is also collaborating with Dennis E. Hallahan, professor of radiation oncology at Vanderbilt, to apply the drug delivery system to fighting cancer. Hallahans lab had identified a molecule that targets a surface feature on lung carcinomas. Harth took the molecule, improved it, attached it to her nanoparticle and the two of them determined that the combination is capable of delivering drugs to the surface of lung tumors.

She is now working with Hallahan to adapt her delivery system to carry cisplatinum, a traditional chemotherapy agent that is used to treat a number of different kinds of cancer but is highly toxic and has a number of unpleasant side effects.

By delivering the anti-cancer agent directly to the cancerous tissues, Evas system decreases the adverse effects on other tissues and increases its potency by delivering a higher concentration of the drug directly on the cancer, Hallahan explains.

The people in my lab have tried at a number of different drug delivery systems and Evas works the best of those weve looked at, Hallahan says.

Vanderbilt is applying for two patents on the system.


'/>"/>

Contact: David F. Salisbury
david.salisbury@vanderbilt.edu
615-343-6803
Vanderbilt University
Source:Eurekalert

Related medicine news :

1. New antibiotic already developing resistance
2. Identifying The Risks Of Developing Schizophrenia
3. Patients With Severe Hemophilia At Risk Of Developing Osteoporosis
4. Risk Of Developing Arthritis
5. Periodontal disease may amass the risk of developing Type 2 diabetes
6. Developing HIV fighter
7. Diabetes cases could double in developing countries in next 30 years
8. Antibiotics Found To Increase The Risk Of Developing Breast Cancer
9. The Effectiveness Of Cancer Drug In Women At Risk Of Developing Cancer
10. Men Who at Risk Of Developing Prostate Cancer
11. Cancer Patients At A Greater Risk Of Developing Blood Clots
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/26/2016)... ... May 26, 2016 , ... Saint Francis Hospital ... years, and the efforts have paid off. Since implementation of these efforts, ... care to enhance perioperative patient experiences and reduce costly complications. Since implementation in ...
(Date:5/26/2016)... ... May 26, 2016 , ... Development Team of Pixel ... for FCPX. , "This new layered style transition tool will keep a consistent flow ... CEO of Pixel Film Studios. , TranSweep is an all new layered style ...
(Date:5/26/2016)... (PRWEB) , ... May 26, 2016 , ... ... industry leader in Blood Pressure products . , High blood pressure affects ... effects. Left untreated, high blood pressure can lead to heart disease, stroke, kidney ...
(Date:5/25/2016)... ... May 26, 2016 , ... The United States Food and Drug Administration ... both men and women. To date, the company is the first and only manufacturer ... adult who suffers with androgenetic alopecia. , “This new level of clearance substantiates ...
(Date:5/25/2016)... ... 25, 2016 , ... The Georgia State University College of Law new building ... Design Commission. , The annual award recognizes projects, programs, individuals and organizations that have ... of its physical heritage and the balance between the old and the new. , ...
Breaking Medicine News(10 mins):
(Date:5/24/2016)... LONDON , May 24, 2016 ... erfüllt beide primären Endpunkte ... und Überlegenheit in ‚ausgezeichneter plus guter ... aufsteigenden Colons    ,      (Logo: ... B.V. gab heute neue positive Daten von der ...
(Date:5/24/2016)... -- NxStage Medical, Inc. (Nasdaq: NXTM ), a ... today announced that Jeffrey H. Burbank , Chief ... of investor conferences. Where applicable, a webcast of the ...   ... Friday, June 10, 2016 1:30 p.m. ET ...
(Date:5/24/2016)... HONG KONG , May 24, 2016 /PRNewswire/ ... primer stent de doble terapia del mundo, introduce ... fístula arteriovenosa. OrbusNeich, una compañía global ... cambian las vidas, ha expandido su cartera incluyendo ... catéteres balón JADE™ y Scoreflex™ PTA son los ...
Breaking Medicine Technology: