Navigation Links
Credit card-sized device could analyze biopsy, help diagnose pancreatic cancer in minutes
Date:2/6/2014

Pancreatic cancer is a particularly devastating disease. At least 94 percent of patients will die within five years, and in 2013 it was ranked as one of the top 10 deadliest cancers.

Routine screenings for breast, colon and lung cancers have improved treatment and outcomes for patients with these diseases, largely because the cancer can be detected early. But because little is known about how pancreatic cancer behaves, patients often receive a diagnosis when it's already too late.

University of Washington scientists and engineers are developing a low-cost device that could help pathologists diagnose pancreatic cancer earlier and faster. The prototype can perform the basic steps for processing a biopsy, relying on fluid transport instead of human hands to process the tissue. The team presented its initial results this month (February 2014) at the SPIE Photonics West conference and recently filed a patent for this first-generation device and future technology advancements.

"This new process is expected to help the pathologist make a more rapid diagnosis and be able to determine more accurately how invasive the cancer has become, leading to improved prognosis," said Eric Seibel, a UW research professor of mechanical engineering and director of the department's Human Photonics Laboratory.

The new instrumentation would essentially automate and streamline the manual, time-consuming process a pathology lab goes through to diagnose cancer. Currently, a pathologist takes a biopsy tissue sample, then sends it to the lab where it's cut into thin slices, stained and put on slides, then analyzed optically in 2-D for abnormalities.

The UW's technology would process and analyze whole tissue biopsies for 3-D imaging, which offers a more complete picture of the cellular makeup of a tumor, said Ronnie Das, a UW postdoctoral researcher in bioengineering who is the lead author on a related paper.

"As soon as you cut a piece of tissue, you lose information about it. If you can keep the original tissue biopsy intact, you can see the whole story of abnormal cell growth. You can also see connections, cell morphology and structure as it looks in the body," Das said.

The research team is building a thick, credit card-sized, flexible device out of silicon that allows a piece of tissue to pass through tiny channels and undergo a series of steps that replicate what happens on a much larger scale in a pathology lab. The device harnesses the properties of microfluidics, which allows tissue to move and stop with ease through small channels without needing to apply a lot of external force. It also keeps clinicians from having to handle the tissue; instead, a tissue biopsy taken with a syringe needle could be deposited directly into the device to begin processing.

Researchers say this is the first time material larger than a single-celled organism has successfully moved in a microfluidic device. This could have implications across the sciences in automating analyses that usually are done by humans.

Das and Chris Burfeind, a UW undergraduate student in mechanical engineering, designed the device to be simple to manufacture and use. They first built a mold using a petri dish and Teflon tubes, then poured a viscous, silicon material into the mold. The result is a small, transparent instrument with seamless channels that are both curved and straight.

The researchers have used the instrument to process a tissue biopsy one step at a time, following the same steps as a pathology lab would. Next, they hope to combine all of the steps into a more robust device including 3-D imaging then build and optimize it for use in a lab. Future iterations of the device could include layers of channels that would allow more analyses on a piece of tissue without adding more bulk to the device.

The UW researchers say the technology could be used overseas as an over-the-counter kit that would process biopsies, then send that information to pathologists who could look for signs of cancer from remote locations. Additionally, it could potentially reduce the time it takes to diagnose cancer to a matter of minutes, Das said.


'/>"/>

Contact: Michelle Ma
mcma@uw.edu
206-543-2580
University of Washington
Source:Eurekalert  

Related medicine news :

1. Debt Management Credit Counseling Receives 2013 Business Partner of the Year Award From Palm Beach County School District
2. Albany New York Chocoholic, Adam Green, Accredits Xocai's "Change Your Chocolate" Success to Demand for Raw Acai Berry in Tokyo Japan and New Taipei Taiwan
3. Target Breach Christmas Nightmare Tips for Consumers on Handling their Credit Cards
4. ATA Developing Accreditation of Online Medical Services
5. Ed4Online Approved to Offer Continuing Education Credits to Addiction Counselors Nationwide
6. Hit a Homerun for the Miracle League of Arizona; Arizona Residents Can Claim a $400 Tax Credit for Couples or $200 for Single Taxpayers
7. Victory Surgical Hospital East Houston Receives Accreditation From the Joint Commission
8. Clarity Quest Marketing Earns Bing Ads Accredited Professional Recognition from Microsoft
9. Volunteer Statistics: Benefits of Volunteering, According to New Infographic from CreditDonkey.com
10. Zane Benefits Publishes New Information on Premium Tax Credit and Employer Coverage
11. Zane Benefits Publishes New Information on Defined Contribution Premium Tax Credits
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Credit card-sized device could analyze biopsy, help diagnose pancreatic cancer in minutes
(Date:12/2/2016)... ... December 02, 2016 , ... On Dec. 2, 2016, CURE® magazine will ... Diego honoring the 2016 MPN Heroes—eight individuals who have made a difference in the ... beyond the standard of care, demonstrating leadership within the MPN community and/or a commitment ...
(Date:12/2/2016)... ... December 02, 2016 , ... More than 100 business, civic, ... to attend the UNCF Dothan-Wiregrass Mayor’s Luncheon Dec. 9, 2016. This inaugural event, ... and operating support to UNCF-member institutions, including Miles College, Oakwood University, Tuskegee University, ...
(Date:12/2/2016)... ... December 02, 2016 , ... ... launch of its 60-day free trial program for all of the company’s desktop ... offer a truly hassle free experience. , FlexiSpot’s unique desktop risers use an ...
(Date:12/2/2016)... ... 2016 , ... The annual time frame to change Medicare health and prescription ... December 7th. Currently-enrolled Medicare beneficiaries who are looking to switch from their current plan ... to make changes during this period order for their new policy to go into ...
(Date:12/2/2016)... ... December 02, 2016 , ... With the number of pain ... an injury, patients must find the one that works for them. When an inventor ... a machine that worked and decided to share it with others. , He developed ...
Breaking Medicine News(10 mins):
(Date:12/2/2016)... British Columbia , December 2, 2016 bioLytical ... bekannt gegeben, ab diesem Monat seinen  INSTI HIV-Selbsttests  in einer Version mit ... ... New: INSTI Self Test! ... , ,      (Photo: ...
(Date:12/2/2016)... The iShares Nasdaq Biotechnology Exchange-Traded Fund ... victory early in November. Less political risk has boosted ... predicting an uptick in M&A activities. Today, Stock-Callers.com takes ... they have fared at the last close: Celldex Therapeutics ... (NASDAQ: FOLD ), Navidea Biopharmaceuticals Inc. (NYSE ...
(Date:11/30/2016)... Nov 30, 2016 Research and ... Overview for Neuromodulation, Neurovascular, Neurosurgical and Monitoring Devices 2017 - ... ... The full report suite on the U.S. market ... drainage systems, intracranial pressure monitoring devices, detachable coils, liquid embolics, ...
Breaking Medicine Technology: