Navigation Links
Common molecule notifies immune system of prostate cancer
Date:1/10/2008

In experiments with mice, researchers have found that the bodys immune system can use a surprisingly common molecule to recognize prostate tumors. The molecule comes from a protein found in all cells of the body; however, immune cells appear to respond to it only when it is present on the surface of cells within a tumor.

Understanding how this protein, known as histone H4, signals the immune system to respond to malignant cells may help researchers refine immunotherapy strategies that harness the body's own immune system to fight tumors. Some types of immunotherapy are already being tested in patients, but many questions remain unanswered. In particular, researchers want to know if tumor cells display molecular signposts that tell the immune system, I'm a cancer cell, destroy me.

Howard Hughes Medical Institute investigator James P. Allison and his team report finding one such signpost in prostate tumors in mice. The finding points toward possible improvements in immunotherapy.

We know very little about how the immune system responds to tumors, especially early tumors, said Allison, director of the Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center in New York. Is the tumor at that stage invisible, or can immune cells detect it? And if they can detect it, can they mount a response? Those are the two big questions.

Allison's research, published in the January 11, 2008, issue of Science, found that immune cells can, in fact, detect prostate cancer, at least in lab mice. However, the immune system mounts only a feeble attack against the tumor.

But the signpost Allison's team identified might make revving up that feeble response much easier.

The strategy relies on a specific type of immune system cell called a killer T cell. Each of these cells bristles with thousands of receptors that recognize molecules that do not belong in the body. When a T cell recognizes a foreign molecule, it tries to destroy the cell carrying it. The T cell then replicates, making copies that also latch onto the same foreign molecule.

In 1982, while at the University of Texas at Austin, Allison discovered T cell antigen receptors, the fork-like proteins that recognize the molecular signals on invading cells. Each T cell has a different receptor as determined by genetics and a random process. There are trillions of different T cell receptors possible, a number greater than the number of cells in the human body.

In normal tissue, the distribution of receptors found on T cells is random. That is, a batch of T cells will have a range of receptors, with none being more common than the others.

But in the new work, one of Allison's colleagues, Peter Savage, discovered that the cancerous prostate glands of mice harbored many T cells carrying a specific receptor. That meant that a single T cell had recognized the malignancy and had replicated.

Savage found the overrepresented receptor in 15 of 20 mice with prostate cancer. That told us something was going on, said Allison. You don't see this in normal mice.

At this point, the team knew that the immune system of the mice was recognizing a particular signpost of malignancy. But they had no idea what the signpost was.

The obvious question was, What are these T cells seeing? said Allison. And that's when the hard work started.

The team chopped up tumor cells in a dish and mixed them with antigen presenting cells and T cells carrying the receptor they had identified. The T cells switched on, which showed we had really gotten the right receptor, said Allison. However, during control experiments, the team also found that nearly any type of tissue, if it was chopped up, would activate the T cells.

This started some head scratching, said Allison. Because if every tissue activated the T cells, it meant that the signpost was not specific to the cancer cells.

The mystery deepened when mice were engineered to produce T cells that carried only the receptor of interest. Those cells did not attack every tissue. They only attacked albeit feebly the prostate tumors. It was a conundrum.

Returning to their experiments in the lab dish, the team decided to focus on specific parts of the tumor cells. They soon discovered that only molecules from the nucleus activated their T cells.

This was really a surprise, because normally, nuclear proteins don't get fed onto the cell surface, said Allison. And in living animals, T cells only recognize molecules on the surface of other cells they can't peer deep into the nucleus.

The team then searched for particular nuclear proteins that activated the T cells. They eventually struck on histone H4. As the wrapper that sheaths the DNA inside all cells, histones are abundant in the nucleus. The finding explained why the normal cells, when chopped up, had activated the T cells their histones were being exposed.

The team had identified the molecular signpost that activated the T cells, but they had also landed on another big question how do the histones rise to the surface of the tumor cells. Every cell has a ton of histone, and we just don't know why the tumor cells put it on their surface, said Allison.

The team is now examining the blood of patients with prostate and other cancers to see if people, like mice, carry T cells sensitive to histone. If so, then we can take those cells out and try to activate them, said Allison. Those cells already recognize the tumor. If we can mobilize them, maybe it will have a therapeutic effect.

Allison and his colleagues are also conducting studies to determine whether the presence of histone H4-reactive T cells in the blood could be used as a diagnostic marker for the early detection of prostate cancer.


'/>"/>

Contact: Jennifer Michalowski
michalow@hhmi.org
301-215-8576
Howard Hughes Medical Institute
Source:Eurekalert

Related medicine news :

1. GHI and HIP Launch Pilot Medical Home Network Project with Support from Commonwealth Fund
2. Multiple skin cancer risk behaviors are common among US adults
3. Catheter chaos: Hospitals lag in preventing common infection
4. Colon cancer risk in US traced to common ancester
5. Breast cancer gene mutation more common in Hispanic, young black women, Stanford/NCCC study finds
6. Constipation most common cause of childrens abdominal pain
7. Brookdale Announces Fourth Quarter Common Stock Dividend of $0.50
8. Schering-Plough Declares Quarterly Dividends on Common Shares and 2007 Mandatory Convertible Preferred Stock
9. American Stock Exchange Lists the Common Stock and Units of The Quantum Group, Inc.
10. BioMed Realty Trust Declares Fourth Quarter 2007 Common Stock and Preferred Stock Dividends
11. Common Infant Vaccine Recalled
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/25/2017)... ... April 25, 2017 , ... ... to raising awareness for Duchenne muscular dystrophy, and funding for Duchenne research, ... cells) Phase I/II HOPE clinical trial in Duchenne announced today. , Coalition ...
(Date:4/25/2017)... CO (PRWEB) , ... April 25, 2017 , ... ... and Liberty attempts to compare student test score performance for the 2015-16 school ... of the state’s voucher programs. Though it highlights important patterns in student test ...
(Date:4/25/2017)... ... 25, 2017 , ... Patients who would like to straighten ... fraction of the time as traditional braces – Wilckodontics®. Dr. Victoria Chen, an ... this revolutionary treatment with or without a referral. , Wilckodontics is also ...
(Date:4/25/2017)... ... 25, 2017 , ... Back Pain Centers of America (BPC), which ... physician in their area, announces the launch of a new and proprietary customer relationship ... looking for reputable physicians to help them with back or neck pain and helps ...
(Date:4/25/2017)... ... April 25, 2017 , ... ... predictive analytics to its patient care management module. Using this new feature, sleep ... patient has been initiated on continuous positive airway pressure (CPAP), oral, or other ...
Breaking Medicine News(10 mins):
(Date:4/19/2017)... April 19, 2017  SARES•REGIS Group leased the ... developing at Conejo Spectrum Business Park in ... Atara Biotherapeutics, Inc. , a biopharmaceutical company developing ... diseases that have been underserved by scientific innovation, ... for cancer, autoimmune and infectious disease. ...
(Date:4/18/2017)... , April 18, 2017 Cogentix Medical, ... on providing the Urology, Uro/Gyn and Gynecology markets with ... the first quarter ended March 31, 2017 after the ... The Company will host a conference call and ... on Tuesday, May 2, 2017 at 4:30 p.m. Eastern ...
(Date:4/18/2017)... 18, 2017 Research and Markets has announced ... report to their offering. ... global arthroscopy devices market to grow at a CAGR of 6.35% ... Devices Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
Breaking Medicine Technology: