Navigation Links
Chemists mimic nature to design better medical tests
Date:2/14/2012

Santa Barbara, Calif. Over their 3.8 billion years of evolution, living organisms have developed countless strategies for monitoring their surroundings. Chemists at UC Santa Barbara and University of Rome Tor Vergata have adapted some of these strategies to improve the performance of DNA detectors. Their findings may aid efforts to build better medical diagnostics, such as improved HIV or cancer tests.

Their research is described in an article published this week in the Journal of the American Chemical Society.

Nature often serves as a source of inspiration for the development of new technologies. In the field of medical diagnostics, for example, scientists have long taken advantage of the high affinity and specificity of biomolecules such as antibodies and DNA to detect molecular markers in the blood. These molecular markers allow them to monitor health status and to guide treatments for diseases, including HIV, cancer, and diabetes.

Kevin W. Plaxco, a professor of chemistry at UCSB, whose group carried out the research, notes that despite their great attributes, a main limitation of such biosensors is their precision, which is confined to a fixed, well-defined "dynamic range" of target concentrations. Specifically, the useful dynamic range of typical biomolecule binding events spans an 81-fold range of target concentrations

"This fixed dynamic range complicates or even precludes the use of biosensors in many applications," said Plaxco. "To monitor HIV progression and provide the appropriate medication, for example, physicians need to measure the levels of viruses over five orders of magnitude. Likewise, the two orders-of-magnitude range displayed by most biosensors is too broad to precisely monitor the concentrations of the highly toxic drugs used to treat many cancers. Our goal was, therefore, to create sensors with extended (for applications needing a broad dynamic range) or narrowed (for applications needing high measurement precision) dynamic ranges at will."

The key breakthrough underlying their new approach came from the simple observation of nature. "All living organisms monitor their environments in an optimized way by using sensing molecules that respond to either wide or narrow change in target concentrations," said Alexis Valle-Blisle, a postdoctoral fellow and the first author of the study. "Nature does so by combining in a very elegant way multiple receptors, each displaying a different affinity for their common target".

Inspired by the optimized behaviors of these natural sensors, the UCSB research group teamed up with Francesco Ricci, professor at the University of Rome Tor Vergata to do their own mixing and matching of biomolecules to manipulate biosensors' dynamic ranges. To validate their approach, they used a widely employed DNA-based biosensor used for detecting mutations in DNA called a "molecular beacon."

By combining sets of molecular beacons all binding the same target molecule but with differing affinities, the international team was able to create sensors with rationally "tuned" dynamic ranges. In one case, they developed a sensor that monitors DNA concentrations over a six orders of magnitude range. In another example, they developed an ultrasensitive sensor that precisely detects small changes in target concentration over only a five-fold dynamic range. Finally, they also built sensors characterized by complex, "custom-made" dynamic ranges in which the sensor is insensitive within a window of desired concentrations (e.g., the clinically "normal" concentration range of a drug) and very sensitive above or below this "appropriate" concentration range. The researchers believe that these strategies can be in principle applied to a wide range of biosensors, which may significantly impact efforts to build better point-of-care biosensors for the detection of disease biomarkers.


'/>"/>
Contact: Andrea Estrada
andrea.estrada@ia.ucsb.edu
805-893-4620
University of California - Santa Barbara
Source:Eurekalert  

Related medicine news :

1. Caltech chemists devise chemical reaction that holds promise for new drug development
2. Rice chemists cram 2 million nanorods into single cancer cell
3. UF medicinal chemists modify sea bacteria byproduct for use as potential cancer drug
4. Breathing easy: LSU biochemists offer first 3-D model of asthma-causing inflammation enzyme
5. MIT chemists engineer plants to produce new drugs
6. Pot Can Mimic Brain Changes Seen in Schizophrenia
7. Mimicking biological complexity, in a tiny particle
8. Deadly bacteria may mimic human proteins to evolve antibiotic resistance
9. Kids May Mimic How Parents Handle Pain
10. Researchers mimic bodys own healing potential to create personalised therapies for inflammation
11. TV Reporters Severe Migraine Mimicked a Stroke
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Chemists mimic nature to design better medical tests
(Date:2/12/2016)... ... 2016 , ... According to an article published February 4th on ... portion of hernia repairs throughout the United States. Commenting on this article, Beverly Hills ... this trend has not only been expected, but it seems to be a natural ...
(Date:2/12/2016)... ... February 12, 2016 , ... ... announced a new initiative—the Siemens Foundation-PATH Ingenuity Fellowships—to develop the advanced skills ... recruit top students from U.S. universities who will draw from Siemens’ deep ...
(Date:2/12/2016)... Church, VA (PRWEB) , ... February 12, 2016 ... ... Store?, Feb. 29, 2016 — 1:30 p.m. – 3:00 p.m. EST, http://www.fdanews.com/fixeddosecombination ... issue in the life cycle of pharmaceutical products, garnering increased attention from all ...
(Date:2/12/2016)... ... ... Coco Libre, the maker of coconut water beverages with a purpose, is ... Coco Libre will offer musicians and celebrities the company’s signature Organic Coconut Water, a ... suite, held this year at the W Hollywood Hotel, has become a pre-show “must” ...
(Date:2/12/2016)... ... February 12, 2016 , ... Itopia, a ... the integration of Clarity Intelligence Platform (CIP) into Cielo®, a discovery, migration and ... intelligence (BI) to their small and medium business (SMB) clients. , ...
Breaking Medicine News(10 mins):
(Date:2/11/2016)... YORK , Feb. 11, 2016 ... instruments commonly used in laboratories. These may range from ... condensers. Laboratory glassware is made from borosilicate glass because ... Laboratory plasticware, on the other hand, started gaining popularity ... it was easier to replace glass with plastic in ...
(Date:2/11/2016)... , Feb. 11, 2016   Health 2.0 ... of new health technologies, announced today " 10 Year ... in health tech over the past ten years.   ... nearly a decade, Health 2.0 has served as the ... and connected with thousands of technologies, companies, innovators, and ...
(Date:2/11/2016)... AAIPharma Services Corp./Cambridge Major Laboratories, Inc. ... development services for the pharmaceutical and biotechnology industries, ... in its Charleston, SC ... recent investments. Charleston ... with small-scale lyophilization. The site has invested in ...
Breaking Medicine Technology: