Navigation Links
Changing genetic 'red light' to green holds promise for treating disease
Date:6/15/2011

In a new study published today in the journal Nature, scientists discovered an entirely new way to change the genetic code. The findings, though early, are significant because they may ultimately help researchers alter the course of devastating genetic disorders, such as cystic fibrosis, muscular dystrophy and many forms of cancer.

The genetic code is the set of instructions in a gene that tell a cell how to make a specific protein. Central to the body's protein production process is messenger RNA, or mRNA, which takes these instructions from DNA and directs the steps necessary to build a protein. For the first time, researchers artificially modified messenger RNA, and in doing so changed the original instructions for creating the protein. The end result: A different protein than originally called for.

"The ability to manipulate the production of a protein from a particular gene is the new miracle of modern medicine," said Robert Bambara, Ph.D., chair of the Department of Biochemistry and Biophysics at the University of Rochester Medical Center. "This is a really powerful concept that can be used to try to suppress the tendency of individuals to get certain debilitating, and sometimes fatal genetic diseases that will forever change their lives."

Protein production is not a perfect process far from it. Frequent mutations or mistakes in DNA and messenger RNA can lead to flawed proteins that have the potential to cause serious harm. In the study, researchers focused on a common type of mutation that occurs when an mRNA molecule contains a pre-mature "stop" signal, known as a pre-mature stop codon. A premature stop codon orders a cell to stop reading the genetic instructions partway through the process, resulting in the creation of an incomplete, shortened protein.

Researchers were able to alter mRNA in a way that turned a stop signal into a "go" signal. As a result, the cell could read the genetic instructions all the way through and create a normal, full-length protein. The team produced these results both in vitro and in live yeast cells.

"This is a very exciting finding," said Yi-Tao Yu, Ph.D., lead study author and associate professor of Biochemistry and Biophysics at the Medical Center. "No one ever imagined that you could alter a stop codon the way we have and allow translation to continue uninterrupted like it was never there in the first place."

The findings are important because current estimates suggest that approximately one third of genetic diseases are caused by the presence of pre-mature stop codons that result in shortened proteins. The results could aid the development of treatment strategies designed to help the body override stop codons and produce adequate amounts of full-length proteins, whose absence causes diseases like cystic fibrosis and contributes to different types of cancer.

Yu, along with first author John Karijolich, Ph.D., used another type of RNA guide RNA to modify messenger RNA. Guide RNAs are short RNAs that bind to specific sequences in RNA and allow just one particular site to be modified. "Guide RNAs give us tremendous power to zero in on one spot in the genome and make very targeted changes," noted Bambara.

The team developed an artificial guide RNA and programmed it to target and change a specific stop codon in an mRNA.

"The fact that this strategy worked that the guide RNA we created found its way to its target, the stop codon, and directed the desired structure change is pretty remarkable. Guide RNAs weren't thought to have access to messenger RNA, so no one believed they could target messenger RNA for modification," said Karijolich, who conducted the research as a graduate student at Rochester, but is now a postdoctoral fellow in the Department of Biochemistry at the Robert Wood Johnson Medical School. "Our results bring up the question of whether a similar process may be happening naturally."

"Previous research has presented other ways to modify the genetic code, but what is really unique about our method is that it is at the RNA level and it is site specific. We can express the artificial guide RNA in a cell and direct it to make a modification at a single site and only that site," said Yu.

Altering messenger RNA in this way may be another mechanism human cells use to create many different types of proteins. Given our complexity, humans have surprisingly few genes. While it is well established that the majority of human genes code for more than one protein, mRNA modification may be an unrealized way that humans are able to do this.

Yu plans to pursue this research further, studying whether and how targeted mRNA modification is happening naturally.


'/>"/>

Contact: Emily Boynton
emily_boynton@urmc.rochester.edu
585-273-1757
University of Rochester Medical Center
Source:Eurekalert

Related medicine news :

1. Is Social Networking Changing the Face of Medicine?
2. CWRU researchers call for changing how research is done
3. Changing trends in hip fracture incidence around the world
4. Songbirds strategy for changing its tune could inform rehab efforts
5. The changing roles of 2 hemispheres in stroke recovery
6. Changing Parental Behavior May Help Obese Kids Lose Weight
7. Blood-thinning treatment standards changing for heart patients, new research shows
8. Color-changing blast badge detects exposure to explosive shock waves
9. Practice-changing studies on how oncologists treat cancer to be presented at ASTRO Annual Meeting
10. Colorado researcher discovers mechanism for changing adult cells into stem-like cells
11. Study shows behaviors and attitudes towards oral sex are changing
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... TopConsumerReviews.com recently ... of Eyeglasses . , Millions of individuals in the United States and Canada ... become a way to both correct vision and make a fashion statement. Even celebrities ...
(Date:6/26/2016)... ... 2016 , ... Brent Kasmer, a legally blind and certified personal trainer is helping to develop ... The fitness app plans to fix the two major problems leading the fitness industry today:, ... all type program , They don’t eliminate all the reasons people quit their ...
(Date:6/25/2016)... ... ... "With 30 hand-drawn hand gesture animations, FCPX users can easily customize each ... Film Studios. , ProHand Cartoon’s package transforms over 1,300 hand-drawn pictures into hand ... select a ProHand generator and drag it above media or text in the Final ...
(Date:6/25/2016)... ... June 25, 2016 , ... Conventional wisdom preaches the benefits of ... of the latter, setting the bar too high can result in disappointment, perhaps even ... progress toward their goal. , Research from PsychTests.com reveals that behind ...
(Date:6/24/2016)... Dallas, Texas (PRWEB) , ... June 24, 2016 ... ... 12th International Conference and Scientific Sessions in Dallas that it will receive two ... Announcement of the grants came as PHA marked its 25th anniversary by recognizing ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... 2016 According to a new ... Pen Needles, Safety Pen Needles), Needle Length (4mm, 5mm, ... Mode of Purchase (Retail, Non-Retail) - Trends & Global ... the market for the forecast period of 2016 to ... Billion by 2021 from USD 1.65 Billion in 2016, ...
(Date:6/24/2016)... Belgium , June 24, 2016 ... the appointment of Dr. Edward Futcher ... Non-Executive Director, effective June 23, 2016.Dr. Futcher was ... Nominations and Governance Committees.  As a non-executive member ... independent expertise and strategic counsel to VolitionRx in ...
(Date:6/23/2016)... 23, 2016  MedSource announced today that it ... software solution of choice.  This latest decision demonstrates ... to their clients by offering a state-of-the-art electronic ... establishes nowEDC as the EDC platform of choice ... clients.  "nowEDC has long been a preferred EDC ...
Breaking Medicine Technology: