Navigation Links
Cells of aggressive leukemia hijack normal protein to grow
Date:2/26/2010

PHILADELPHIA - Researchers have found that one particularly aggressive type of blood cancer, mixed lineage leukemia (MLL), has an unusual way to keep the molecular motors running. The cancer cells rely on the normal version of an associated protein to stay alive.

MLL happens when a piece of chromosome 11 breaks off at the normal MLL-associated gene. The broken gene attaches itself to another chromosome, resulting in a fusion protein that eventually causes uncontrolled growth of blood cells.

The lab of senior author Xianxin Hua, MD, PhD, an associate professor of Cancer Biology at the Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, found that this runaway growth triggered by the fusion protein is blocked when the gene for the normal protein is deleted from leukemia cells. This indicates that the normal protein is required for MLL to proliferate. The findings appear in the current issue of Cancer Cell, and are featured on the cover.

The chromosomal breakages and reattachments of MLL, called translocations, are common in many aggressive leukemias. Children with mixed lineage leukemia have a poor treatment outlook because they do not respond well to standard therapies for other types of leukemia, and they often suffer from early relapse after chemotherapy.

MLL translocations come in a variety of types, causing the fusion of the normal gene with one of over 60 other genes on other chromosomes known to work in human leukemias. The fusion protein triggers leukemia, partly through modifying chromatin, a DNA-protein complex.

The researchers also discovered that normal the MLL protein cooperates with the fusion proteins via chemical modifications to chromosomes that regulate what genes should be turned on or off; by increasing survival of leukemia cells; and maintaining leukemia stem cells.

"This research not only uncovers the crucial role of a normal protein key to the development of MLL, but also how the cancer cells stay alive in the first place," says Hua. The unraveling of the new, yet little-anticipated, molecular player behind MLL points to the normal MLL gene as a potential target for new therapies, partly through repressing leukemia stem cells.

Building on this discovery, Hua's team will further investigate whether mixed lineage leukemia cells are particularly "addicted" to normal MLL protein, a non-oncogene, in their growth and survival and whether normal MLL proteins specifically cooperate with other factors to sustain leukemia stem cells, with the hope of searching for an Achille's heel of this aggressive leukemia.


'/>"/>

Contact: Karen Kreeger
karen.kreeger@uphs.upenn.edu
215-349-5658
University of Pennsylvania School of Medicine
Source:Eurekalert  

Related medicine news :

1. Notch-blocking drugs kill brain cancer stem cells, yet multiple therapies may be needed
2. Heart Stem Cells Move Closer to Human Treatments
3. Bitter melon extract attacks breast cancer cells
4. New tool illuminates connections between stem cells and cancer
5. Pittsburgh Neurosurgeons Explore Use of Drug that Illuminates Brain Tumor Cells To Guide Surgery
6. UCR researcher identifies mechanism malaria parasite uses to spread in red blood cells
7. Attacking cancer cells with hydrogel nanoparticles
8. New study suggests stem cells sabotage their own DNA to produce new tissues
9. New Study Uses Adult Stem Cells in Effort to Save Limbs of Patients with Peripheral Arterial Disease
10. UCSF Researchers Identify Regulator of Human Sperm Cells
11. Loss of gene function makes prostate cancer cells more aggressive
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cells of aggressive leukemia hijack normal protein to grow
(Date:6/27/2016)... ... June 27, 2016 , ... TopConsumerReviews.com recently awarded their highest five-star rating to ... of individuals in the United States and Canada wear eyeglasses. Once considered to be ... vision and make a fashion statement. Even celebrities use glasses as a way of ...
(Date:6/26/2016)... , ... June 26, 2016 , ... PawPaws brand ... new product that was developed to enhance the health of felines. The formula is ... The two main herbs in the PawPaws Cat Kidney Support Supplement Soft ...
(Date:6/25/2016)... ... June 25, 2016 , ... Austin residents seeking Mohs surgery ... of Mohs Surgery and to Dr. Russell Peckham for medical and surgical dermatology. , ... for skin cancer. The selective fellowship in Mohs Micrographic Surgery completed by Dr. Dorsey ...
(Date:6/25/2016)... CA (PRWEB) , ... June 25, 2016 , ... As ... with Magna Cum Laude and his M.D from the David Geffen School of Medicine ... and returned to Los Angeles to complete his fellowship in hematology/oncology at the UCLA-Olive ...
(Date:6/24/2016)... ... ... A recent article published June 14 on E Online details ... to state that individuals are now more comfortable seeking to undergo not only the ... and cheek reduction. The Los Angeles area medical group, Beverly Hills Physicians (BHP) notes ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... , June 24, 2016  Consumers have ... and regulators/payers have placed more emphasis on patient ... patient support programs in the pharmaceutical industry have ... medications. Consequently, pharmaceutical companies are focusing on becoming ... are providing products and services that improve health. ...
(Date:6/24/2016)... , June 24, 2016   Bay Area ... Network,s Dean Center for Tick Borne Illness ... and Rehabilitation, MIT Hacking Medicine, University of California, ... today announced the five finalists of Lyme ... disease.  More than 100 scientists, clinicians, researchers, entrepreneurs, ...
(Date:6/24/2016)... -- The Academy of Managed Care Pharmacy (AMCP) today ... allow biopharmaceutical companies to more easily share health care ... coverage decisions, a move that addresses the growing need ... The recommendations address restrictions in the sharing of product ... a prohibition that hinders decision makers from accessing HCEI ...
Breaking Medicine Technology: