Navigation Links
Cell growth technology promises more successful drug development
Date:9/18/2007

Scientists have developed unique technology to grow stem cells and other tissue in the laboratory in conditions similar to the way they grow in the human body.

The technology, developed and patented by scientists at Durham University and its spin-out company ReInnervate Limited, is a plastic scaffold which allows cells to be grown in a more realistic three-dimensional (3D) form compared to the traditional flat surface of a Petri dish.

Evidence gathered by the research team shows that the technology is a cheap and straightforward way of cultivating cells in 3D. Using it could lead to more successful drug development programmes and a reduction in unnecessary tests on animals.

A study proving the effectiveness of the scaffold, funded by ReInnervate and the Engineering and Physical Sciences Research Council (EPSRC), is published today in the Journal of Anatomy.

A large proportion of drugs fail at the testing stage, costing industry millions of pounds in research and development costs and failed drugs trials every year. At the moment, most drugs in development are first tested on cells grown in two-dimensions (2D) in standard laboratory equipment such as Petri dishes or flasks but cells in the human body form tissues and grow in more complex, three-dimensional ways.

The new study tested the toxic effect of a cancer drug called Methotrexate (MTX) on liver cells grown in three and two dimensions. Liver cells are frequently used in the drug development industry to test the toxicity of drugs and MTX is known to cause liver damage at high doses.

Tests showed that the structure and properties of the cells grown using the 3D scaffold were most similar to liver cells found in the human body, compared with the 2D cells which appeared disorganised when viewed under the microscope.

When subject to doses of MTX, cells grown in 2D died at very low concentrations, whereas 3D cells grown using the scaffold were far more robust and more accurately reflected the behaviour of cells in the human body when subjected to similar doses of the drug.

Dr Stefan Przyborski, a senior researcher with Durham University and Chief Scientific Officer of ReInnervate, has tested ten different tissue types on the scaffold, including bone, liver, fat and stem cells from bone marrow, and is marketing the product for commercial use.

The scaffold is made of highly porous polystyrene, is about the size of a ten pence piece and resembles a thin white disc. It has a structure resembling that of a sponge and is riddled with tiny holes which scientists are able to populate with cells which are then cultivated under laboratory conditions.

The technology has potential to be used to grow human stem cells for drug development. Their use may reduce the need for the tests on animals that are usually the next step before progressing to clinical trials in humans.

Another current use of the scaffold involves growing skin cells which are being used by the cosmetics industry to test cosmetics.

Dr Przyborski said: Our results suggest that testing drugs on liver cells using our 3D culture system may be more likely to reflect true physiological responses to toxic substances. Because the 3D cells are cultivated under more realistic conditions, it means that they function more like real tissues.

Scientists are therefore able to gain a more accurate idea of how a drug will behave in the human body, knowledge which can contribute to improving the efficiency of drug discovery, reducing drug development costs, and may help reduce the number of animals in research.

There are other ways to growing cells in 3D in the laboratory. However, these approaches are restricted by their variability, complexity, expense and they are not easily adapted to routine use in high throughput screening studies.

Our technology is essentially a well engineered piece of plastic that provides a suitable environment for cells to grow more naturally in a 3D configuration. Our product is available off-the-shelf, it is easy to use in routine applications, it is highly adaptable to different tests, it is inert and it is cheap and easy to produce and manufacture.

Dr Stefan Przyborski and colleagues at Durham University play a key role in the North-east England Stem Cell Institute (NESCI), a unique interdisciplinary collaboration to convert stem cell research and technologies into cost-effective, ethically-robust 21st century health solutions to ameliorate degenerative diseases, the effects of ageing and serious injury.


'/>"/>

Contact: Dr. Stefan Przyborski
stefan.przyborski@durham.ac.uk
44-191-334-1341
Durham University
Source:Eurekalert

Related medicine news :

1. More The Usage More The Growth In The Adult Brain.
2. A new growth factor identified
3. Anthrax drug doxycycline could stunt fetal growth
4. Anti-Cancer Drug Restores Normal Cell Growth
5. Zinc may enhance growth in Young sickle cell patients
6. Drug stabilizes cancer growth
7. Enzyme stimulates growth of adult stem cells
8. Mental growth in babies at risk
9. Low-dose Growth Hormone (GH) with diet and exercise may help weight loss
10. New Molecule that can stop the growth of Viruses
11. Human Growth Hormone Found To be Dangerous For Human Use
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... ... March 24, 2017 , ... Vighter established ... same time by providing Prehospital Trauma Life Support (PHTLS) course scholarships to four ... prehospital trauma education developed in cooperation with the American College of Surgeons to ...
(Date:3/24/2017)... , ... March 24, 2017 , ... According to a ... is invalid because it does not obey the rules Congress has directed the CBO ... jobs, which the GOP reform would restore. Yet, it estimates a reduction in employer-based ...
(Date:3/24/2017)... ... March 24, 2017 , ... In just two days, Aqua ... micro-veggies garden on Kickstarter . Surpassing the $100,000 milestone so quickly,10-times the ... consumers (and counting) already backing the campaign. , “We are very grateful ...
(Date:3/24/2017)... ... ... Viewers who like to educate themselves on current issues and who enjoy ... societal issues tend to appreciate and love the "Informed" series, hosted by Rob Lowe. ... for causes around the world. , Running for charity has become a ...
(Date:3/24/2017)... ... ... Time GPS”: a dauntless and enlightened study of the second-coming of Christ, and ... published author, Wesley Gerboth, a World War II veteran, with a highly-regarded reputation as ... ninety-one, he shares the Wisdom God bestowed upon him in this publication. , ...
Breaking Medicine News(10 mins):
(Date:3/27/2017)... --  Genprex, Inc. , a privately held, clinical-stage biopharmaceutical company developing ... Company,s Chief Operating Officer, is scheduled to present a corporate overview ... Annual Cancer BioPartnering & Investment Forum: Tuesday, March 28, 2017 at ... ... Annual Future Leaders in Biotech Industry – Friday, April 7, 2017 ...
(Date:3/24/2017)... and PUNE, India , March 24, 2017 ... estimated to reach $2,614 million by 2022, Globally, registering a CAGR of 5.1% from ... highest revenue, and is projected to dominate the market during the study period. ... ... Research Logo ...
(Date:3/24/2017)... Mar. 24, 2017 Research and Markets has announced ... Growth and Demand Forecast to 2022" report to their offering. ... The global wound care market ... at a CAGR of 6.7% during 2016-2022 Among the various ... largest share in the global market in 2015. Among the various applications, ...
Breaking Medicine Technology: