Navigation Links
Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy

California Institute for Regenerative

LOS ANGELES (June 19, 2012) Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

"With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model and then be reproduced in clinical trials."

Contact: Nicole White
Cedars-Sinai Medical Center

Related medicine news :

1. Cedars-Sinai physician definitively links irritable bowel syndrome and bacteria in gut
2. Cedars-Sinai stroke team earns award for improving regions quality of care
3. San Francisco’s Advanced Male Medical Center Announces Discount, Discusses Erectile Dysfunction
4. MDS researchers join forces to advance patient treatments and outcomes
5. New England Journal of Medicine hails new skin cancer drug as greatest advance yet
6. GW researchers discover biomarker for advanced bile duct fibrosis and bile duct cancer
7. Studies See Advances in Detecting, Treating Pancreatic Cancer
8. Obese More Likely to Be Diagnosed With Advanced Thyroid Cancer
9. Advanced Prostate Cancer Drug May Help at Earlier Stage
10. Advanced genetic screening method may speed vaccine development
11. Triple negative breast cancer symposium highlights current advances
Post Your Comments:
(Date:6/25/2016)... TX (PRWEB) , ... June 25, 2016 , ... Austin ... of the American College of Mohs Surgery and to Dr. Russell Peckham for medical ... and highly effective treatment for skin cancer. The selective fellowship in Mohs Micrographic Surgery ...
(Date:6/25/2016)... ... 25, 2016 , ... As a lifelong Southern Californian, Dr. Omkar Marathe earned ... the David Geffen School of Medicine at UCLA. He trained in Internal Medicine at ... fellowship in hematology/oncology at the UCLA-Olive View-Cedars Sinai program where he had the opportunity ...
(Date:6/24/2016)... ... June 24, 2016 , ... A recent article ... are unfamiliar with. The article goes on to state that individuals are now more ... these less common operations such as calf and cheek reduction. The Los Angeles area ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... ... Conference and Scientific Sessions in Dallas that it will receive two significant new ... the grants came as PHA marked its 25th anniversary by recognizing patients, medical ...
(Date:6/24/2016)... ... , ... Topical BioMedics, Inc, makers of Topricin and MyPainAway Pain Relief Products, join The ‘Business ... to $12 an hour by 2020 and then adjusting it yearly to increase at the ... minimum wage, assure the wage floor does not erode again, and make future increases more ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... OAKLAND, N.J. , June 24, 2016 /PRNewswire/ ... in the design, development and manufacturing of collagen ... and regeneration announced today that Bill Messer ... Sales and Marketing to further leverage the growing ... surgery medical devices. Bill joins the ...
(Date:6/24/2016)... 24, 2016 The Academy of Managed Care ... that would allow biopharmaceutical companies to more easily ... make formulary and coverage decisions, a move that addresses ... medicines. The recommendations address restrictions in the ... the drug label, a prohibition that hinders decision makers ...
(Date:6/24/2016)... 2016   Pulmatrix, Inc ., (NASDAQ: ... drugs, announced today that it was added to the ... its comprehensive set of U.S. and global equity indexes ... important milestone for Pulmatrix," said Chief Executive Officer ... our progress in developing drugs for crucial unmet medical ...
Breaking Medicine Technology: