Navigation Links
'Can you hear me now?' Researchers detail how neurons decide how to transmit information
Date:3/25/2011

PITTSBURGHThere are billions of neurons in the brain and at any given time tens of thousands of these neurons might be trying to send signals to one another. Much like a person trying to be heard by his friend across a crowded room, neurons must figure out the best way to get their message heard above the din.

Researchers from the Center for the Neural Basis of Cognition, a joint program between Carnegie Mellon University and the University of Pittsburgh, have found two ways that neurons accomplish this, establishing a fundamental mechanism by which neurons communicate. The findings have been published in an online early edition of Proceedings of the National Academy of Sciences (PNAS).

"Neurons face a universal communications conundrum. They can speak together and be heard far and wide, or they can speak individually and say more. Both are important. We wanted to find out how neurons choose between these strategies," said Nathan Urban, the Dr. Frederick A. Schwertz Distinguish Professor of Life Sciences and head of the Department of Biological Sciences at CMU.

Neurons communicate by sending out electrical impulses called action potentials or "spikes." These spikes code information much like a version of Morse code with only dots and no dashes. Groups of neurons can choose to communicate information in one of two ways: by spiking simultaneously or by spiking separately.

To find out how the brain decided which method to use to process a sensory input, the researchers looked at mitral cell neurons in the brain's olfactory bulb the part of the brain that sorts out smells and a common model for studying global information processing. Using slice electrophysiology and computer simulations, the researchers found that the brain had a clever strategy for ensuring that the neurons' message was being heard.

Over the short time scale of a few milliseconds, the brain engaged its inhibitory circuitry to make the neurons fire in synchrony. This simultaneous, correlated firing creates a loud, but simple, signal. The effect was much like a crowd at a sporting event chanting, "Let's go team!" Over short time intervals, individual neurons produced the same short message, increasing the effectiveness with which activity was transmitted to other brain areas. The researchers say that in both human and neuronal communication alike, this collective communication works well for simple messages, but not for longer or more complex messages that contain more intricate information.

The neurons studied used longer timescales (around one second) to convey these more complex concepts. Over longer time intervals, the inhibitory circuitry generated a form of competition between neurons, so that the more strongly activated neurons silenced the activity of weakly activated neurons, enhancing the differences in their firing rates and making their activity less correlated. Each neuron was able to communicate a different piece of information about the stimulus without being drowned out by the chatter of competing neurons. It would be like being in a group where each person spoke in turn. The room would be much quieter than a sports arena and the immediate audience would be able to listen and learn much more complex information.

Researchers believe that the findings can be applied beyond the olfactory system to other neural systems, and perhaps even be used in other biological systems.

"Across biology, from genetics to ecology, systems must simultaneously complete multiple functions. The solution we found in neuroscience can be applied to other systems to try to understand how they manage competing demands," Urban said.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert  

Related medicine news :

1. AACR honors eminent researchers
2. Penn researchers uncover novel immune therapy for pancreatic cancer
3. Researchers: Sexually active teens need confidential health care
4. Researchers develop a halometer that tests alterations in night vision
5. ESCEO-AMGEN Fellowship awarded to Swedish and Argentinean researchers
6. Mouse Sperm Successfully Grown in Lab, Researchers Say
7. Mayo Clinic researchers find cardiac pacing helps epilepsy patients with ictal asystole
8. Researchers explore new treatments to end OA
9. Gift will allow Mayo researchers to explore cause of dementia in the elderly
10. Stanford researchers discover molecular determinant of cell identity
11. Researchers discover possible biomarker and therapeutic target for melanoma
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Can you hear me now?'  Researchers detail how neurons decide how to transmit information
(Date:6/25/2016)... ... , ... First Choice Emergency Room , the largest network of independent ... Director of its new Mesquite-Samuell Farm facility. , “We are pleased to announce ... Dr. James M. Muzzarelli, Executive Medical Director of First Choice Emergency Room. , ...
(Date:6/25/2016)... ... June 25, 2016 , ... Conventional wisdom preaches the benefits of moderation, whether ... latter, setting the bar too high can result in disappointment, perhaps even self-loathing. However, ... their goal. , Research from PsychTests.com reveals that behind the tendency ...
(Date:6/24/2016)... , ... June 24, 2016 , ... Marcy was in a crisis. Her son James, ... out at his family verbally and physically. , “When something upset him, he couldn’t control ... use it. He would throw rocks at my other children and say he was going ...
(Date:6/24/2016)... ... June 24, 2016 , ... Comfort Keepers® of San ... Society and the Road To Recovery® program to drive cancer patients to and from ... adults to ensure the highest quality of life and ongoing independence. Getting to ...
(Date:6/24/2016)... ... 24, 2016 , ... The Haute Beauty Network, affiliated with ... as a prominent plastic surgeon and the network’s newest partner. , Dr. ... handsome men, look naturally attractive. Plastic surgery should be invisible.” He stands by ...
Breaking Medicine News(10 mins):
(Date:6/26/2016)... -- Jazz Pharmaceuticals plc (Nasdaq: JAZZ ) ... Improvements Act of 1976, as amended ("HSR"), with respect ... Nasdaq: CPXX ) expired effective June 24, ... As previously announced on May 31, 2016, Jazz Pharmaceuticals ... which Jazz Pharmaceuticals has commenced a tender offer for ...
(Date:6/24/2016)... June 24, 2016  Global Blood Therapeutics, Inc. (GBT) ... developing novel therapeutics for the treatment of grievous ... the closing of its previously announced underwritten public ... the public offering price of $18.75 per share. ... offered by GBT. GBT estimates net proceeds from ...
(Date:6/24/2016)... 2016 Dehaier Medical Systems Ltd. (NASDAQ: ... markets and sells medical devices and wearable sleep respiratory ... strategic cooperation agreement with Hongyuan Supply Chain Management Co., ... June 20, 2016, to develop Dehaier,s new Internet medical ... Dehaier will leverage Hongyuan Supply Chain,s sales platform to ...
Breaking Medicine Technology: