Navigation Links
Atomic structure discovered for a sodium channel that generates electrical signals in living cells
Date:7/13/2011

Scientists at the University of Washington (UW) in Seattle have determined the atomic architecture of a sodium channel. The achievement opens new possibilities for molecular medicine researchers around the world in designing better drugs for pain, epilepsy, and heart rhythm disturbances.

Sodium channels are pores in the membranes of excitable cells such as brain nerve cells or beating heart cells that emit electrical signals. Sodium channels selectively open and close to allow the passage of millions of tiny charged particles across the cell membrane. The gated flow of sodium ions generates tiny amounts of electrical current.

Never before have researchers been able to obtain a high-resolution crystal structure showing all of the atoms of this complex protein molecule and how they relate in three-dimensions.

The findings were reported in the July 10 advanced online edition of Nature. The authors are Jian Payandeh, Todd Scheuer, Ning Zheng, and William A. Catterall, all of the UW Department of Pharmacology. Zheng is also a Howard Hughes Medical Institute investigator.

"Electrical signals from voltage-gated sodium channels encode and process information in the brain and nervous system, make heart muscle contract, and control the release of insulin from the pancreas," said Catterall, UW chair and professor of pharmacology. "Sodium channels are important molecules because they regulate a wide range of physiological activities."

Mutations in voltage-gated sodium channels underlie inherited forms of epilepsy, migraine headaches, heart rhythm disturbances, periodic paralysis, and some pain syndromes.

The symptoms of these disorders often stem from faulty electrical signals between cells. In epilepsy, for example, an electrical "storm" erupts in a network of cells in the brain. Some nerve toxins, such as scorpion stings or hazardous algal blooms, disrupt sodium channels.

Many medications for pain, epilepsy and cardiac arrhythmias as well as for local and regional anesthesia -- act on sodium channels.

"When you get a spinal block or your dentist gives you a numbing injection, the local anesthetic drugs temporarily shut down sodium channels in the area of the procedure and prevent your brain from receiving the bad news from your nerves," Catterall said.

Over more than three decades, Catterall's lab and others at the UW have made many major discoveries about these tiny pores.

"But we had only a fuzzy, partial view of what the channels looked like," he said. "Now we have a much more detailed picture."

The ability to visualize the atomic structural details of the sodium channel was made possible by use of advanced methods of X-ray crystallography and data analysis in the laboratory of Ning Zheng, associate professor of pharmacology.

"A major problem in studying sodium channels is that they want to be in a cell membrane," Catterall said. New biochemical techniques allowed the research team to extract and purify bacterial sodium channels that they had expressed in the cell membranes of insect cells, and keep them in a stable, functional form for determination of their structure.

"Because of the importance of knowing the atomic structure of sodium channels, many labs have tried to work on it with no success," Zheng said. "We succeeded thanks to the collaborative approach we took and the right combination of talent, expertise, and resources." Payandeh, the first author of the paper, integrated expertise from both the Zheng and Catterall labs and his own past experience to tackle the challenge.

The structure emerged gradually over several months of laborious study.

"We all thought 'Eureka!' but nobody said it," Catterall said, recalling when he and his colleagues realized what they had accomplished.

Examining kinetic models of its intricate molecular structure will tell scientists more about the biomechanics of a voltage-gated sodium channel.

"We hope to gain insight into why they selectively let in sodium ions and nothing else," the researchers said, "and how they respond to changes in the cell membrane voltage, how they open and close, and how they generate electrical signals." The researchers have already spotted intriguing molecular movement, such as rolling motions of some functional parts of the sodium channel molecule and their connectors.

Knowing how form affects function in sodium channels could lead to many new ideas from scientists around the world on designing drugs to home in on critical areas of the sodium channel molecule. The implications for drug therapies are enormous.

For example, the authors of the Nature paper unexpectedly discovered a portal large enough for small pore-blocking drugs to enter the central cavity of the sodium channel.

"There is a lot of interest in drug design based on the structure of this molecule and its binding sites," Catterall said. "Scientists hope to discover better drugs that exert their effects on specific targets within the sodium channel. In particular, they want to find better pain medications with fewer side effects and improved treatments for seizure disorders and heart rhythm problems, such as those leading to sudden cardiac death."

In 1980 Catterall identified ion channel molecules for the first time by locating the protein subunits of the sodium channel. Earlier, in the 1970s, his UW colleague Dr. Bertil Hille, professor of physiology and biophysics, had analyzed the electrical signals produced by ion channels and had proposed mechanistic models for their function.

The new structure reveals how the mechanistic models that Hille proposed work in three dimensions.

After more than 30 years of studying sodium ion channels, Catterall said the ability to visualize the subject of his life-long research in incredibly detailed 3-D is "fantastic."


'/>"/>

Contact: Leila Gray
leilag@u.washington.edu
206-685-0381
University of Washington
Source:Eurekalert

Related medicine news :

1. Researchers find anatomic differences after robotic-assisted radical prostatectomy
2. Radiation exposure poses similar risk of first and second cancers in atomic bomb survivors
3. Leonardos anatomical sketches fascinate modern-day anatomist
4. Autism changes molecular structure of the brain, UCLA study finds
5. Structured Exercise Programs Help Lower Blood Sugar, Study Finds
6. Facial structure of men and women has become more similar over time
7. Biomarker-driven science at the heart of new ACRIN-ECOG structure
8. Finding of long-sought drug target structure may expedite drug discovery
9. Scientists develop method to identify fleetingly ordered protein structures
10. Mindfulness meditation training changes brain structure in 8 weeks
11. Scientists Map Key Structure HIV Uses to Infect Cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/26/2016)... , ... June 26, 2016 , ... Brent Kasmer, a legally blind and certified personal ... personalized through a fitness app. The fitness app plans to fix the two major problems ... offer a one size fits all type program , They don’t eliminate all ...
(Date:6/25/2016)... Austin, TX (PRWEB) , ... June 25, 2016 , ... ... Fellow of the American College of Mohs Surgery and to Dr. Russell Peckham for ... popular and highly effective treatment for skin cancer. The selective fellowship in Mohs Micrographic ...
(Date:6/25/2016)... ... June 25, 2016 , ... First Choice Emergency Room ... Dr. Sesan Ogunleye, as the Medical Director of its new Mesquite-Samuell Farm facility. ... of our new Mesquite location,” said Dr. James M. Muzzarelli, Executive Medical Director of ...
(Date:6/25/2016)... (PRWEB) , ... June 25, 2016 , ... On Friday, ... presented a Bronze Wellness at Work award to iHire in recognition of their exemplary ... part of the 7th annual Maryland Workplace Health & Wellness Symposium at the BWI ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Those who ... with these feelings, many turn to unhealthy avenues, such as drug or alcohol abuse, ... Marne, Michigan, has released tools for healthy coping following a traumatic event. , Trauma ...
Breaking Medicine News(10 mins):
(Date:6/23/2016)... Research and Markets has announced the addition of the ... report to their offering. ... failure, it replaces the function of kidneys by removing the ... the treatment helps to keep the patient body,s electrolytes such ... Increasing number of ESRD patients & substantial healthcare expenditure on ...
(Date:6/23/2016)... DUBLIN , June 23, 2016 ... the "Pharmaceutical Excipients Market by Type (Organic Chemical ... Preservative), Formulation (Oral, Topical, Coating, Parenteral) - Global Forecast ... The global pharmaceutical excipients ... 2021 at a CAGR of 6.1% in the forecast ...
(Date:6/23/2016)... 23, 2016 Roche (SIX: RO, ROG; OTCQX: ... its Elecsys BRAHMS PCT (procalcitonin) assay as a dedicated ... shock. With this clearance, Roche is the first IVD ... solution for sepsis risk assessment and management. ... and PCT levels in blood can aid clinicians in ...
Breaking Medicine Technology: