Navigation Links
Argonne, University of Chicago scientists develop targeted cancer treatment using nanomaterials
Date:8/19/2009

ARGONNE, Ill. (Aug. 19, 2009) Scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory and the University of Chicago's Brain Tumor Center have developed a way to target brain cancer cells using inorganic titanium dioxide nanoparticles bonded to soft biological material.

Thousands of people die from malignant brain tumors every year, and the tumors are resistant to conventional therapies. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue.

"It is a real example of how nano and biological interfacing can be used for biomedical application," said scientist Elena Rozhkova with Argonne's Center for Nanoscale Materials. "We chose brain cancer because of its difficulty in treatment and its unique receptors."

This new therapy relies on a two-pronged approach. Titanium dioxide is a versatile photoreactive nanomaterial that can be bonded with biomolecules. When linked to an antibody nanoparticles recognize and bind specifically to cancer cells. Focused visible light is shined onto the affected region, and the localized titanium dioxide reacts to the light by creating free oxygen radicals that interact with the mitochondria in the cancer cells. Mitochondria act as cellular energy plants, and when free radicals interfere with their biochemical pathways, mitochondria receive a signal to start cell death.

"The significance of this work lies in our ability to effectively target nanoparticles to specific cell surface receptors expressed on brain cancer cells," said Dr. Maciej S. Lesniak, Director of Neurosurgical Oncology at University of Chicago Brain Tumor Center. "In so doing, we have overcome a major limitation involving the application of nanoparticles in medicine, namely the potential of these agents to distribute throughout the body. We are now in a position to develop this exciting technology in preclinical models of brain tumors, with the hope of one day employing this new technology in patients."

X-ray fluorescence microscopy done at Argonne's Advanced Photon Source also showed that the tumors' invadopodia, actin-rich micron scale protrusions that allow the cancer to invade surrounding healthy cells, can be also attacked by the titanium dioxide.

So far, tests have been done only on cells in a laboratory setting, but animal testing is planned for the next phase. Results show an almost 100 percent cancer cell toxicity rate after six hours of illumination, and 80 percent after 48 hours.

Also, since the antibody only targets the cancer cells, surrounding healthy cells are not affected, unlike other cancer treatments such as chemotherapy and radiotherapy. Rozhkova said that a proof of concept is demonstrated, and other cancers can be treated as well using different targeting molecules, but research is in the early stages.


'/>"/>

Contact: Brock Cooper
bcooper@anl.gov
630-252-5565
DOE/Argonne National Laboratory
Source:Eurekalert

Related medicine news :

1. University of Iowa professor identifies new eating disorder
2. University of Wisconsin Hospitals and Clinics Complete System-Wide Conversion to Masimo SET Pulse Oximetry Technology
3. University of Texas Study Details Lengthy Payment Delays for Medicare Part D Prescription Drug Claims, Confirming Need for Legislative Fix
4. Tulane University to receive $14M for international HIV/AIDS program
5. University of Nevada School of Medicine Professor Confirms Accuracy Through Validation Study Using the CSI Health Station Model 6K
6. Boston University School of Medicine researcher recipient of Memory Ride Grant
7. Loma Linda University Medical Center Selects Beryl to Manage Call Center Interactions for Womens Services Programs and Departments
8. Medina General Hospital and University Hospitals Agree to Pursue Affiliation
9. J.D. Power and Associates Reports: Hackensack University Medical Center Recognized as First Hospital to Achieve Distinction for Providing an Outstanding Inpatient Experience in All Four Service Areas
10. The First Incisionless Transoral Fundoplication for Treatment of Gastroesophageal Reflux is Performed in the U.S. at Ohio State University and Oregon Health & Science University Medical Centers
11. George Mason University professor receives $2.6 million NIH grant to study Alzheimers disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/25/2016)... ... June 25, 2016 , ... As a lifelong Southern Californian, Dr. Omkar ... M.D from the David Geffen School of Medicine at UCLA. He trained in Internal ... complete his fellowship in hematology/oncology at the UCLA-Olive View-Cedars Sinai program where he had ...
(Date:6/24/2016)... ... June 24, 2016 , ... A recent article published June ... with. The article goes on to state that individuals are now more comfortable seeking ... common operations such as calf and cheek reduction. The Los Angeles area medical group, ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... ... Conference and Scientific Sessions in Dallas that it will receive two significant new ... the grants came as PHA marked its 25th anniversary by recognizing patients, medical ...
(Date:6/24/2016)... ... ... makers of Topricin and MyPainAway Pain Relief Products, join The ‘Business for a Fair Minimum ... by 2020 and then adjusting it yearly to increase at the same rate as the ... wage floor does not erode again, and make future increases more predictable. , The company ...
(Date:6/24/2016)... ... June 24, 2016 , ... ... Grove Investment Group (TGIG), has initiated cultivation and processing operations at its production ... and Pahrump, Nevada. , Puradigm is the manufacturer of a complete system of ...
Breaking Medicine News(10 mins):
(Date:6/24/2016)... Research and Markets has announced the addition of ... report to their offering. ... The World Market for Companion Diagnostics covers the world market ... the report includes the following: , World ... Region (N. America, EU, ROW), 2015-2020 , World IVD ...
(Date:6/24/2016)... June 24, 2016  Arkis BioSciences, a leading ... and more durable cerebrospinal fluid treatments, today announced ... Series-A funding is led by Innova Memphis, followed ... other private investors.  Arkis, new financing will accelerate ... the market release of its in-licensed Endexo® technology. ...
(Date:6/23/2016)... DUBLIN , June 23, 2016 ... the "Pharmaceutical Excipients Market by Type (Organic Chemical ... Preservative), Formulation (Oral, Topical, Coating, Parenteral) - Global Forecast ... The global pharmaceutical excipients ... 2021 at a CAGR of 6.1% in the forecast ...
Breaking Medicine Technology: