Navigation Links
Setting up Successful siRNA Library Screens

siRNA Libraries Tie Genes to Cell Functions

Ambion has developed human siRNA libraries that target important gene classes including kinases, ion channels, receptor classes, molecular motors, and many others (Figure 1). Applying these siRNA libraries to cell culture screens reveals human genes that are critical for cellular functions. The diversity of cell functions that can be characterized using siRNA libraries is limited only by the range of phenotypic assays that can be developed. With siRNA libraries, you will be able to identify critical human genes faster and easier than ever before.

Figure 1. Ambion siRNA Libraries. [Additional Libraries and Ordering Information]

Scientists at Ambion have already used several Silencer siRNA libraries in quantitative assays to identify genes involved in apoptosis, cell proliferation, TRAIL induction, and p53 activation. Below we provide a general overview of an effective screening process. See Recommendations for Successful siRNA Library Screens, for tips for successful screening experiments.

Overview of the Screening Process

(1) Develop a quantitative assay to monitor cellular process being studied.

Assays that measure the intensity of a cellular phenotype range from microscopic assays that monitor cell size, cell cycle status, or antibody staining; to enzymatic assays that assess the turnover of a specific substrate in a cell lysate; to direct measurements of biomolecules or small molecules in lysates, on cells, or in medium.

A successful screen must use an assay that quantitates a cellular phenotype and maximizes the signal-to-noise ratio. An effective assay must include quality positive and negative control siRNAs. The positive control siRNA should produce the desired phenotype when transfected into cells, and the target of the positive control siRNA should ideally be a gene that is known to act in the process being studied. For instance, if the goal is to identify genes that are involved in a signaling pathway after stimulation by a specific molecule then transfecting an siRNA targeting the receptor for the moleule should disrupt the cell signaling and result in the desired phenotype. Likewise, a negative control siRNA should have essentially no effect on the assay results, which should be comparable to untransfected or mock-transfected cells.

Maximizing signal-to-noise involves testing variables like assay time, assay components (i.e. the reporter), cell type, and length of time between transfection and assay. The greater the difference in assay results between the positive and negative controls, the greater the spread will be in the screening results, and thus, the better the opportunity to i dentify interesting genes.

(2) Optimize transfection conditions for the desired cells.

The first step is to identify a transfection reagent and plating conditions that maximize uptake of active siRNA while maintaining high cell viability. We find it useful to measure both knockdown and cell viability in cells transfected with 2-5 different transfection reagents when using cell lines, or 5-10 electroporation conditions (e.g. varying cell concentration, voltage, pulse length, pulse number, siRNA concentration etc.) when using primary or suspension cells. Transfection can then be optimized for the reagent or electroporation condition that worked best among the conditions tested.

Ambion has several transfection agents developed for effective siRNA transfer to specific cell types; see Enchance Success of siRNA Delivery Into Your Cells and siPORT siRNA Electroporation Buffer for more information. For detailed protocols for chemical transfection and electroporation optimization, see our siRNA Delivery Resource .

Screening siRNAs targeting hundreds of genes requires conditions for high-throughput transfection. siPORT NeoFX facilitates the transfection of up to 1,0 00 wells in less than an hour without the need for robotics (see Streamline Your siRNA Transfections).

(3) Screen

Once the assay and transfection processes have been optimized, a library of siRNAs can be introduced sequentially into cells in a 24 or 96 well plate. Triplicate transfections for each siRNA provide enough data for reasonable statistical analysis. Positive and negative control siRNAs transfected on each plate provide quantitative numbers that will allow data from different plates to be normalized and will provide the range of phenotypes that can be used to identify genes that rate as "hits".

Both positive and negative control siRNAs are available from Ambion. See, RNAi: The Controls You Need for more information.

(4) Validate hits

"Hits" are genes for which an siRNA produces a phenotype that is similar to the positive control. Validating a hit involves showing that the observed phenotype is due to reducing the expression of the target gene. We confirm a hit by individually transfecting three distinct siRNAs targeting the same gene, monitoring reduction in the target mRNA or protein, and then measuring the phenotype. In theory, all siRNAs that similarly reduce the expression of a target gene should yield the same phenotype. In practice, we find occasional off-target sequence effects of siRNAs that lead to false positive or false negative phenotypes for a given siRNA. The use of three individual siRNAs essentially eliminates false positives and false negatives.

back to top



Page: All 1 2 3 4 5

Related biology technology :

1. Setting up the laboratory to avoid contamination
2. Reduce Errors and Save Time When Setting Up PCRs
3. Setting up a kinase profiler with IMAP
4. Keys to Successful Densitometry
5. Successful PCR amplification and subcloning of a GC-rich DNA fragment
6. General Considerations for Successful Transfection Experiments
7. Designing a Successful qRT-PCR Experiment
8. Precursor miRNAs for Successful miRNA Functional Studies
9. Recommendations for Successful siRNA Library Screens
10. Successful stabilization of gene expression profiles
11. Custom and library siRNA for efficient gene silencing
Post Your Comments:

(Date:10/11/2017)... ... October 11, 2017 , ... At its national board meeting ... I. Sheikh, the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space ... membership in ARCS Alumni Hall of Fame . ASTER Labs is a ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... announced today it will be hosting a Webinar titled, “Pathology is going digital. ... Associates , on digital pathology adoption best practices and how Proscia improves lab ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... the implantation and pregnancy rates in frozen and fresh in vitro fertilization ... progesterone and maternal age to IVF success. , After comparing the results from ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second ... a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, ... from US2020. , US2020’s mission is to change the trajectory of STEM education ...
Breaking Biology Technology:
(Date:3/30/2017)... 30, 2017  On April 6-7, 2017, will ... hackathon at Microsoft,s headquarters in ... focus on developing health and wellness apps that provide ... the Genome is the first hackathon for personal ... largest companies in the genomics, tech and health industries ...
(Date:3/30/2017)... 2017 Trends, opportunities and forecast in this ... technology (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, ... end use industry (government and law enforcement, commercial and ... and others), and by region ( North America ... Asia Pacific , and the Rest of the ...
(Date:3/28/2017)... The report "Video Surveillance Market ... Storage Devices), Software (Video Analytics, VMS), and Service (VSaaS, ... to 2022", published by MarketsandMarkets, the market was valued ... to reach USD 75.64 Billion by 2022, at a ... year considered for the study is 2016 and the ...
Breaking Biology News(10 mins):