Navigation Links
A Screen of shRNAs Targeting Tumor Suppressor Genes to Identify Factors Involved in Paclitaxel Sensitivity

Diana Ji, Stacy L. Deeds, and Edward J. Weinstein


RNA interference methodologies have been utilized in small to large scale screening projects. The technology has allowed researchers to perform gene-silencing experiments in timeframes and target cells previously not possible. While siRNA screens have become fairly common, large scale screening with shRNA is still evolving. Advantages of shRNA-based experiments include long-term knockdown and viral delivery to non-transfectable cell types.

We set out to develop strategies for using lentiviral-based shRNA libraries in larger scale silencing projects (see Figure 1 for library vector map). Pilot screens using a tumor suppressor gene family set were performed to address biologically relevant questions while simultaneously developing screening strategies that could be used by a variety of researchers in the field.

A topic that has been extensively investigated is the effectiveness of chemotherapy for treating various carcinomas. A major cause of mortality in the United States, lung cancer, accounts for approximately one third of cancer-related deaths and has a low 5-year survival rate with few patients responding effectively to chemotherapy.

One potential treatment for lung carcinoma is paclitaxel. This anti-cancer agent (produced by Bristol-Meyers Oncology) functions by stabilization of microtubules so they cannot depolymerize. It effectively shifts the equilibrium in cells towards microtubule assembly, disrupting the normal operation of the microtubule network and thereby arresting the mitotic process.

Treatment with paclitaxel alone, however, is effective in only a fraction of the population. Approximately 21% to 24% of patients with non-small cell lung carcinoma (NSCLC) will respond to a regimen with this single agent. As a result, first line therapy may involve multiple chemotherapeutics, often combining paclitaxel with one, or sometimes two, additional chemotherapies, including cisplatin, carboplatin, or radiation treatment.

Since chemotherapy is toxic and stressful to a patient, there is an obvious benefit to limiting the amounts of these toxic compounds administered. If patients who are likely to positively respond to paclitaxel as a single agent could be identified prior to treatment, they may be spared the unnecessary pain associated with combination regimens. One potential way to do this is through employment of pharmacogenomics.

The first step in a potential strategy would be to categorize patients based on the molecular profile of their tumor. This can be effectively accomplished through use of microarrays (on an RNA level), array CGH (on a DNA level), or protein chips. This type of work is well established and has been thoroughly reviewed elsewhere.

After understanding the profile of a tumor, one still must determine which molecular signature is indicative of responsiveness to a drug, and which is not. We utilized an shRNA screen to help elucidate this question, specifically in the case of NSCLC and paclitaxel treatment.

Various transcripts were down-regulated using lentiviral-based shRNAs found in a panel targeting tumor suppressor genes (Sigma-Aldrich, MISSION ↓ TRC shRNA Human Tumor Suppressors, SH0531) in lung cancer cells grown under standard conditions. Transductions were performed in 96-well plates, with each well receiving cells and a single shRNA delivered by lentiviral particles. The entire tumor suppressor panel, consisting of approximately 75 gene targets each represented by 3-5 individual shRNA clones, fits onto five 96-well plates. After selection of transduced cells with puromycin, each well was split1:2 (2 sets of 5 x 96-well plates). One set of plates was mock-treated while the second set was treated with paclitaxel. Cell growth was then assessed in all wells (Figure 2). All values were normalized to a negative control (cells infected with an empty vector-containing lentivirus).

This screen allows one to identify genes involved in cell survival, and more importantly, it is designed to identify which shRNAs (and therefore which genes) will assist in making a cell more sensitive, or more resistant, to paclitaxel (Figure 2). We identified several genes that lead to increased resistance to treatment. This correlates with published examples of cases in which patients carrying mutations or deletions of tumor suppressor genes have a lower rate of response to a variety of therapies. Prominent among those genes is p53, which was found to play a role in paclitaxel resistance in our screen as well.

More intriguing is the finding that some genes, when down-regulated by these shRNAs, lead to increased sensitivity of cells to paclitaxel (Figure 3). Again, there is evidence in the literature to support this finding. BRCA1 has been found to be mutated in breast and ovarian tumors, and patients with these mutations can be more responsive to chemotherapies than patients with this gene intact. Patients with renal cell carcinoma and a mutation or truncation in the VHL tumor suppressor gene have better response rates and a longer time to tumor progression when treated with a certain molecular therapy than patients with a functioning VHL. The gene VHL was also identified in our screen.

It is important to note that these experiments are preliminary and it is difficult to conclude the role of specific genes identified and their potential relevance to actual clinical outcomes, however, the implications are promising. Our experiments imply that by examining the molecular state of a tumor and determining the levels of certain tumor suppressor genes, one might be able to determine the likelihood of response to a therapy. Patients with tumors containing high levels of some genes, such as p53, would be expected to respond less well to paclitaxel, perhaps falling into the group of 80% non-responders, while patients with low levels of other genes, such as VHL, would be expected to respond better to this drug (perhaps falling into the 20% clinical responder population).

An advantage to the use of shRNA is that it allows an investigator to rapidly validate results in multiple model systems. We are encouraged by our findings in this one non-small cell lung carcinoma line and want to attempt to validate the results in additional lines. We are similarly interested in determining whether these genes play a role only in NSCLC, or if they also affect response rates in cell lines derived from other tumor types. We can do this fairly simply with lentiviral delivery of shRNA with little, or no, additional optimization of conditions necessary. Unlike the more traditional siRNA approach, we do not need to optimize transfection or reaction conditions for each new cell line transduction is usually as simple as growing cells and adding lentivirus to the media. Also unlike siRNA, shRNA allows one to have a long-term down-regulation of a gene. This will facilitate our moving from an in vitro setting to an in vivo experiment. After confirmation of our results in mouse xenograft models, we hope to examine the clinical setting to see if patients who have been treated with paclitaxel in the past have a gene expression profile correlating with our findings. If so, these elucidated genes will have exciting possibilities, either as targets or biomarkers for paclitaxel sensitivity.

For more information on the MISSION TRC shRNA collections, visit sigma-aldrich.com/rnai.

Figure 1
Features of the pLKO.1-Puro vector allow for transient or stable transfection of the shRNA as well as production of lentiviral particles. Unlike adenovirus or murine-based MMLV or MSCV retroviral systems, lentiviral-based particles permit efficient infection and integration of the specific shRNA construct into differentiated and non-dividing cells, overcoming low transfection and integration difficulties when using these cell lines. pLKO.1 allows for long-term knockdown and phenotypic observation and transduction of difficult or sensitive cell lines.



Figure 2. Screening Tumor Suppressor Knockdown Cells for Paclitaxel Sensitivity.
The MISSION TRC Human Tumor Suppressor Gene Family Set (Cat. No. SH0531) was used to screen for genes that could enhance cell sensitivity to the widely used cancer therapy drug, Paclitaxel. Lentiviral particles were used to transduce cells in 96-well plates and knock down the corresponding tumor suppressor gene expression. Cells were split into two samples. One sample set was treated with Paclitaxel and the second set received medium only. Results were normalized to pLKO.1-puro empty vector control virus (Cat. No. SHC001V). Outliers were observed that either conferred more resistance or sensitivity to Paclitaxel treatment. The red data point represents a positive control for increased sensitivity to Paclitaxel.


Figure 3. Multiple MISSIONTM shRNA Clones Per Target Produce the Same Phenotype.
Multiple clones for four genes conferred increased cell sensitivity to drug treatment. These genes have the potential to be prognostic markers in chemotherapeutic responses.


Similar article originally printed in Genetic Engineering News , Jan. 15, 2007.



'"/>

Source:


Page: All 1 2 3 4 5 6

Related biology technology :

1. Innovative Tissue Array Technology for High-Throughput Screening of Gene Expression
2. Screening of Beer-Spoilage Bacteria Using the LightCycler PCR Workflow System
3. LightCycler foodproof Beer Screening Kit
4. Perform RNAi Library Screens on Any Budget
5. Recommendations for Successful siRNA Library Screens
6. Setting up Successful siRNA Library Screens
7. Temporal Temperature Gradient Electrophoresis: A Powerful Technique to Screen Mutations
8. Development of a Multiplex Bead-Based Assay for Antibody Screening of a Nonhuman Primate Colony on the Bio-Plex System
9. Screening for potential beta 2-adrenergic receptor antagonists using CypHer5E and IN Cell Analyzer 1000
10. Screening for β2-adrenergic receptor agonists using the pH-sensitive dye,CypHer5, and the IN Cell Analyzer 3000
11. A Mix-and-Read Cell-Based Assay for Hybridoma Screening Using the FMAT 8100 HTS System
Post Your Comments:
(Date:9/30/2014)... September 30, 2014 UFP Technologies, ... specialty packaging has recently introduced a custom insulated ... Pack . The new insulated shipper solves the ... distribution process. UFP Technologies’ BioShell is a universal ... during storage, handling and shipping. The insulated shipper ...
(Date:9/30/2014)... Ontario, Canada (PRWEB) September 30, 2014 Back ... based on 500 square feet. per employee, which included space ... world back then.” says Jeff Howell, partner at Nidea ... advisory firm in Toronto. “By the year 2000, however, ... are now seeing that number come down to 175 to ...
(Date:9/29/2014)... Each year in the US, ... attention. In the military, burn injury is a ... medical care. More than 800 service members sustained ... heal slowly, remain inflamed and often become infected, ... and functionally damaging. While developments in supportive care ...
(Date:9/29/2014)... of the military conflicts in Iraq and Afghanistan, more ... with traumatic brain injury caused by exposure to bomb ... devices, or IEDs. Symptoms of traumatic brain injury can ... nausea, to more severe impairments in memory and cognition. ... has recognized the critical importance and complexity of this ...
Breaking Biology Technology:UFP Technologies Introduces Insulated Shipping Container For Bulk Drug Transportation 2UFP Technologies Introduces Insulated Shipping Container For Bulk Drug Transportation 3ITRA Global Reports on How Companies Are Squeezing More Employees into Less Office Space 2ITRA Global Reports on How Companies Are Squeezing More Employees into Less Office Space 3Faster Healing with Fewer Scars 2Modeling shockwaves through the brain 2Modeling shockwaves through the brain 3Modeling shockwaves through the brain 4
... , QIAshredder spin columns are designed for simple and rapid homogenization , of cell and ... , , Format: , ... , , Sample source: ... plant cell or tissue lysates, white blood cell lysates, , ...
... , , , , This ... human cancer-related genes for functional genomics research using , RNAi. ... , , , , ... cancer researchers (see table below for a list of genes). Every siRNA has , ...
... Competent Cells for added , convenience, , , , , , , ... Included , Concentration , , , ... , , , ... 50 ng/l, , , Ligation Master ...
Cached Biology Technology:QIAshredder Homogenizer 2Cancer siRNA Oligo Set Version 1.0 2Cancer siRNA Oligo Set Version 1.0 3Cancer siRNA Oligo Set Version 1.0 4
(Date:9/29/2014)... popular culture, mathematics is often deemed inaccessible or esoteric. ... more important role in our daily lives and a ... ideas often behind the scenes. , UC Santa ... Mathematics and an assistant professor of mechanical engineering, often ... of his recent research published in the Proceedings ...
(Date:9/29/2014)... that a combination of a real-time feedback system together ... residence resulted in a reduction of 37% in energy ... 1360.49 kWh, which is equivalent to a reduction of ... , In contrast, another eight halls, exposed only ... resulted in saw a 3.5% reduction in energy consumption. ...
(Date:9/29/2014)... not normally considered capable of doing anything on their ... move through water. In the future, such moving droplets ... your own to be self-moving is a ... entities can be self-moving, report researchers from University of ... Czech Republic. , The researchers have made alcohol droplets ...
Breaking Biology News(10 mins):At the interface of math and science 2At the interface of math and science 3At the interface of math and science 4Scientists make droplets move on their own 2
... Mellon University President Subra Suresh has been elected a ... the only current university president to be elected to ... is among the highest professional distinctions accorded to engineers, ... those who have made outstanding contributions to their fields. ...
... Medicine of the National Academies honored members Donald Berwick, R. ... today at the IOM,s 43rd annual meeting. ... member for distinguished service over an extended period. He ... Care in America, which produced the landmark reports To Err ...
... The Yangtze finless porpoise, which inhabits the high-traffic waters ... endangered, with only about 1,000 animals alive today. Scientists ... colleagues are using medical technology to shed new light ... waterway punctuated by constant shipping, dredging, and underwater construction. ...
Cached Biology News:Carnegie Mellon President Subra Suresh elected to Institute of Medicine 2Institute of Medicine honors members for outstanding service 2Institute of Medicine honors members for outstanding service 3Seeing in the dark 2Seeing in the dark 3
EGTA, 50 g. Ethylene glycol-O,O-bis-[2-amino-ethyl]-N,N,N,N,-tetraacetic acid.Assay: > 99.0%. Category: Nucleotides & Enzymes & Biochemicals, Ultrapure Biochemicals ....
Request Info...
RABBIT ANTI NEOPTERIN...
... Dog serum is collected from fasted mixed breed, ... Available Anticoagulants: N-02: Citrate ... K2EDTA N-08: Potassium Oxalate N-10: ... N-05: ACD N-07: CPD ...
Biology Products: