Navigation Links
USB OptiKinase Eliminates Base Bias in Labeling of Oligonucleotide 5'-Ends

Wild-type T4 Polynucleotide Kinase (PNK)(1,2,3) is commonly used for phosphorylation and labeling of 5'-ends of DNA and oligonucleotides. Labeling, in particular, can be accomplished by two approaches, the forward reaction and the exchange reaction (Fig. 1)(3). Historically, T4 PNK has played a crucial role in molecular biology and it continues to be important in applications such as labeling of probes for hybridization, sequencing or mapping of transcripts and in phosphorylation of DNA ends for cloning(3,4). Although T4 PNK continues to be widely used, the enzyme exhibits two limitations. First, T4 PNK exhibits base bias; the effectiveness of phosphorylation depends on the base at the 5'-end of the oligonucleotide target, with 5'-C exhibiting the lowest extent of phosphorylation(5). Second, T4 PNK can be challenging to use; precise enzyme titrations and careful optimization of reaction times are often required in order to achieve desired results(3,6). USB OptiKinase overcomes these limitations, greatly simplifying and improving phosphorylation and labeling reactions.

OptiKinase is a recombinant version of T4 PNK that has been genetically modified to accomplish uniform and consistent phosphorylation and labeling of 5'-ends of DNA and oligonucleotides. Base bias is dramatically reduced, which should greatly increase uniformity of labeling of diverse templates. The need for careful optimization of reaction conditions is also reduced, which should improve consistency of results between experiments. Finally, lower amounts of radioactive ATP can be used without sacrificing labeling efficiency, resulting in reduced reagent costs. Thus, USB OptiKinase offers substantial advantages over wild-type T4 PNK.


The following protocol corresponds to use of OptiKinase for labeling of oligonucleotides by the forward reaction. The protocol is similar to that for T4 PNK, with the exception that there is no need to use excess radiolabeled ATP.

2. Mix the contents well and centrifuge briefly. Incubate at 37C for 30 min.

3. Terminate the reaction by heating at 65C for 10 min.

Optional performance assay: The amount of radioactive phosphate incorporated into 5'-ends may be determined by separating 5'-end-labeled oligonucleotide from precursor ATP by binding to DE81 filter paper and washing the filter with a solution of 5% Sodium Phosphate dibasic.

* Either [γ-32P]ATP or [γ-33P]ATP (≥ 3000 Ci/mmol) may be used. Whether OptiKinase or T4 PNK is used, best results are obtained by using very fresh radiolabeled ATP. Even a few days (less than one half life) can dramatically decrease the specific activity of the final product.


OptiKinase offers a variety of advantages over T4 PNK. Primary among these is that OptiKinase overcomes base bias, allowing uniform labeling of oligonucleotides (Fig. 2). Additionally, OptiKinase shifts the reaction equilibrium toward phosphorylation, allowing efficient labeling with relatively lower amounts of radiolabel (Fig. 3). It performs well across a range of enzyme concentrations, eliminating the need for careful enzyme titrations (Fig. 4). OptiKinase works well for labeling of double-stranded oligonucleotides (Fig. 5). It can also be used for phosphorylation of oligonucleotides with non-labeled ATP and for labeling of variety of double-stranded DNA ends after restriction digestion and removal of the 5'-phosphate by phosphatase treatment (data not shown).


OptiKinase outperforms T4 PNK in a variety of 5'-labeling reactions, in terms of labeling uniformity, efficiency, and ease of use. For these reasons, OptiKinase is highly recommended for 5'-phosphorylation applications in general, and for 5'-labeling applications in particular.


1. GALBURT, E. A., PELLETIER, J., WILSON, G., AND STODDARD, B. L. (2002) Structure 10, 1249- 1260.

2. WANG, L. K., LIMA, C. D., AND SHUMAN, S. (2002) EMBO J. 21, 3873-3880.

3. RICHARDSON, C. C. (1981) The Enzymes , 3rd Edition, Ed. P. D. Boyer, (Academic Press, New York) 14, 299-314.

4. MAXAM, A. M. AND GILBERT, W. (1980) Methods in Enzymology 65, 499-560.

5. VAN HOUTEN, V., DENKERS, F., VAN DIJK, M., VAN DEN BREKEL, M. AND BRAKENHOFF, R. (1998) Anal. Biochemistry 265, 386-389.

6. LILLEHAUG, J. R. AND KLEPPE, K. (1975) Biochemistry 14, 1221-1225.



Page: All 1 2 3

Related biology technology :

1. New Microarray Labeling Kit for Preparing cDNA Probes
2. aRNA Synthesis and Labeling for Array Analysis
3. Amino Allyl Labeling for Array Analysis
4. Fluorescently Labeling Long dsRNA with the Silencer siRNA Labeling Kit
5. Efficient Europium Labeling of Lymphokine-Activated Killer Cells Using the Gene Pulser II with RF Module, Rev C
6. Oligonucleotide Purity Analysis by Capillary Electrophoresis
7. Using the OligoGreen Oligonucleotide Quantitation Reagent in the Gemini XS, Gemini EM and SpectraMax M2 Microplate Readers (MaxLine Application Note #21)
Post Your Comments:

(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology ... drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription ... is able to cross the cell membrane and bind intracellular STAT3 and inhibit ...
(Date:10/10/2017)... Poway, California (PRWEB) , ... October 10, 2017 , ... ... afternoon speaking at his local San Diego Rotary Club. The event ... San Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined ...
(Date:10/10/2017)... ... October 10, 2017 , ... The ... prestigious awards honoring scientists who have made outstanding contributions to analytical ... during Pittcon 2018, the world’s leading conference and exposition for laboratory science, which ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness Center ... the needs of consumers who are incorporating medical marijuana into their wellness and ... , As operators of two successful Valley dispensaries, The Giving Tree’s two founders, ...
Breaking Biology Technology:
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at . 2016 Year Highlights: ...
(Date:4/13/2017)... , April 13, 2017 According to a new ... Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, ... IAM Market is expected to grow from USD 14.30 Billion in 2017 ... (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , Apr. 11, 2017 Research and ... Market 2017-2021" report to their offering. ... The global eye tracking market to grow at a ... report, Global Eye Tracking Market 2017-2021, has been prepared based on ... covers the market landscape and its growth prospects over the coming ...
Breaking Biology News(10 mins):