Navigation Links
Researchers reveal why some pain drugs become less effective over time
Date:4/3/2012

MONTREAL, April 3, 2012 Researchers at the University of Montreal's Sainte-Justine Hospital have identified how neural cells like those in our bodies are able to build up resistance to opioid pain drugs within hours. Humans have known about the usefulness of opioids, which are often harvested from poppy plants, for centuries, but we have very little insight into how they lose their effectiveness in the hours, days and weeks following the first dose. "Our study revealed cellular and molecular mechanisms within our bodies that enables us to develop resistance to this medication, or what scientists call drug tolerance," lead author Dr. Graciela Pineyro explained. "A better understanding of these mechanisms will enable us to design drugs that avoid tolerance and produce longer therapeutic responses."

The research team looked at how drug molecules would interact with molecules called "receptors" that exist in every cell in our body. Receptors, as the name would suggest, receive "signals" from the chemicals that they come into contact with, and the signals then cause the various cells to react in different ways. They sit on the cell wall, and wait for corresponding chemicals known as receptor ligands to interact with them. "Until now, scientists have believed that ligands acted as 'on- off' switches for these receptors, all of them producing the same kind of effect with variations in the magnitude of the response they elicit," Pineyro explained. "We now know that drugs that activate the same receptor do not always produce the same kind of effects in the body, as receptors do not always recognize drugs in the same way. Receptors will configure different drugs into specific signals that will have different effects on the body."

Pineyro is attempting to tease the "painkilling" function of opioids from the part that triggers mechanisms that enable tolerance to build up. "My laboratory and my work are mostly structured around rational drug design, and trying to define how drugs produce their desired and non desired effects, so as to avoid the second, Pineyro said. "If we can understand the chemical mechanisms by which drugs produce therapeutic and undesired side effects, we will be able to design better drugs."

Once activated by a drug, receptors move from the surface of the cell to its interior, and once they have completed this 'journey', they can either be destroyed or return to the surface and used again through a process known as "receptor recycling." By comparing two types of opioids DPDPE and SNC-80 the researchers found that the ligands that encouraged recycling produced less analgesic tolerance than those that didn't. "We propose that the development of opioid ligands that favour recycling could be away of producing longer-acting opioid analgesics," Pineyro said.


'/>"/>

Contact: William Raillant-Clark
w.raillant-clark@umontreal.ca
514-343-7593
University of Montreal
Source:Eurekalert

Related biology technology :

1. Researchers Identify New Regulator in Allergic Diseases
2. CNIO researchers take part in the most comprehensive personalized medicine study performed to date
3. Researchers develop graphene supercapacitor holding promise for portable electronics
4. Researchers capture first-ever images of atoms moving in a molecule
5. Penn researchers build first physical metatronic circuit
6. Pitt researchers coax gold into nanowires
7. York researchers create tornados inside electron microscopes
8. Self-assembling nanorods: Berkeley Lab researchers obtain 1-, 2- and 3-D nanorod arrays and networks
9. Navy researchers investigate small-scale autonomous planetary explorers
10. Notre Dame researchers develop paint-on solar cells
11. Quantum computing has applications in magnetic imaging, say Pitt researchers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... Palo Alto, CA, USA (PRWEB) , ... October 11, 2017 , ... ... is set to take place on 7th and 8th June 2018 in San Francisco, ... and policy influencers as well as several distinguished CEOs, board directors and government officials ...
(Date:10/11/2017)... the Netherlands and LAGUNA HILLS, Calif. ... The Institute of Cancer Research, London ... use MMprofilerâ„¢ with SKY92, SkylineDx,s prognostic tool to risk-stratify patients ... trial known as MUK nine . The University of ... trial, which is partly funded by Myeloma UK, and ICR ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal ... the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and ...
(Date:10/10/2017)... ... 2017 , ... For the second time in three years, ... Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October 10th, ... mission is to change the trajectory of STEM education in America by dramatically ...
Breaking Biology Technology:
(Date:5/6/2017)... 5, 2017 RAM Group , ... new breakthrough in biometric authentication based on a ... properties to perform biometric authentication. These new sensors are ... created by Ram Group and its partners. This sensor ... supply chains and security. Ram Group is a ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced Design ... will feature emerging and evolving technology through its ... Summits will run alongside the expo portion of the ... panels and demonstrations focused on trending topics within 3D ... design and manufacturing event will take place June 13-15, 2017 ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" or ... independent Directors Mr. Robin D. Richards and Mr. ... the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer said," ... and benefiting from their considerable expertise as we move forward ...
Breaking Biology News(10 mins):