Navigation Links
Zinc oxide microwires improve the performance of light-emitting diodes
Date:10/31/2011

Researchers have used zinc oxide microwires to significantly improve the efficiency at which gallium nitride light-emitting diodes (LED) convert electricity to ultraviolet light. The devices are believed to be the first LEDs whose performance has been enhanced by the creation of an electrical charge in a piezoelectric material using the piezo-phototronic effect.

By applying mechanical strain to the microwires, researchers at the Georgia Institute of Technology created a piezoelectric potential in the wires, and that potential was used to tune the charge transport and enhance carrier injection in the LEDs. This control of an optoelectronic device with piezoelectric potential, known as piezo-phototronics, represents another example of how materials that have both piezoelectric and semiconducting properties can be controlled mechanically.

"By utilizing this effect, we can enhance the external efficiency of these devices by a factor of more than four times, up to eight percent," said Zhong Lin Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "From a practical standpoint, this new effect could have many impacts for electro-optical processes including improvements in the energy efficiency of lighting devices."

Details of the research were reported in the Sept. 14 issue of the journal Nano Letters. The research was sponsored by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Department of Energy (DOE). In addition to Wang, the research team mainly included Qing Yang, a visiting scientist at Georgia Tech from the Department of Optical Engineering at Zhejiang University in China.

Because of the polarization of ions in the crystals of piezoelectric materials such as zinc oxide, mechanically compressing or otherwise straining structures made from the materials creates a piezoelectric potential an electrical charge. In the gallium nitride LEDs, the researchers used the local piezoelectric potential to tune the charge transport at the p-n junction.

The effect was to increase the rate at which electrons and holes recombined to generate photons, enhancing the external efficiency of the device through improved light emission and higher injection current. "The effect of the piezopotential on the transport behavior of charge carriers is significant due to its modification of the band structure at the junction," Wang explained.

The zinc oxide wires form the "n" component of a p-n junction, with the gallium nitride thin film providing the "p" component. Free carriers were trapped at this interface region in a channel created by the piezoelectric charge formed by compressing the wires.

Traditional LED designs use structures such as quantum wells to trap electrons and holes, which must remain close together long enough to recombine. The longer that electrons and holes can be retained in proximity to one another, the higher the efficiency of the LED device will ultimately be.

The devices produced by the Georgia Tech team increased their emission intensity by a factor of 17 and boosted injection current by a factor of four when compressive strain of 0.093 percent was applied to the zinc oxide wire. That improved conversion efficiency by as much as a factor of 4.25.

The LEDs fabricated by the research team produced emissions at ultraviolet frequencies (about 390 nanometers), but Wang believes the frequencies can be extended into the visible light range for a variety of optoelectronic devices. "These devices are important for today's focus on green and renewable energy technology," he said.

In the experimental devices, a single zinc oxide micro/nanowire LED was fabricated by manipulating a wire on a trenched substrate. A magnesium-doped gallium nitride film was grown epitaxially on a sapphire substrate by metalorganic chemical vapor deposition, and was used to form a p-n junction with the zinc oxide wire.

A sapphire substrate was used as the cathode that was placed side-by-side with the gallium nitride substrate with a well-controlled gap. The wire was placed across the gap in close contact with the gallium nitride. Transparent polystyrene tape was used to cover the nanowire. A force was then applied to the tape by an alumina rod connected to a piezo nanopositioning stage, creating the strain in the wire.

The researchers then studied the change in light emission produced by varying the amount of strain in 20 different devices. Half of the devices showed enhanced efficiency, while the others fabricated with the opposite orientation of the microwires showed a decrease. This difference was due to the reversal in the sign of the piezopotential because of the switch of the microwire orientation from +c to c.

High-efficiency ultraviolet emitters are needed for applications in chemical, biological, aerospace, military and medical technologies. Although the internal quantum efficiencies of these LEDs can be as high as 80 percent, the external efficiency for a conventional single p-n junction thin-film LED is currently only about three percent.

Beyond LEDs, Wang believes the approach pioneered in this study can be applied to other optical devices that are controlled by electrical fields.

"This opens up a new field of using the piezoelectric effect to tune opto-electronic devices," Wang said. "Improving the efficiency of LED lighting could ultimately be very important, bringing about significant energy savings because so much of the world's energy is used for lighting."


'/>"/>

Contact: John Toon
jtoon@gatech.edu
404-894-6986
Georgia Institute of Technology Research News
Source:Eurekalert  

Related biology technology :

1. Edible carbon dioxide sponge
2. GeNO LLC Receives Federal Grant To Advance Studies of Inhaled Nitric Oxide Product for the Treatment of Chronic Pulmonary Diseases
3. The heat is on for sodium-manganese oxide rechargeable batteries
4. Researchers find replacement for rare material indium tin oxide
5. Blocking carbon dioxide fixation in bacteria increases biofuel production
6. Reportlinker Adds Propylene Oxide: 2010 World Market Outlook and Forecast
7. Earthshaking possibilities may limit underground storage of carbon dioxide
8. GeNO LLC Initiates Phase 2 Trial For Nitric Oxide Delivery System
9. New nano techniques integrate electron gas-producing oxides with silicon
10. Cardium Gains Exclusive Access to Novel Polymer-Based Nitric Oxide Technology for Expansion of Wound Healing Product Portfolio
11. Researchers create new class of piezoelectric logic devices using zinc oxide nanowires
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Zinc oxide microwires improve the performance of light-emitting diodes
(Date:4/26/2017)... ... ... LABS, Inc. (LABS) announced in December 2016 that two new Zika Virus ... (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) specific for IgM and IgG ZIKV antibodies. ... under an Investigational New Drug (IND) study protocol. , Now, as part of ...
(Date:4/26/2017)... ... April 26, 2017 , ... ... EMEA and North America this May on the following dates: ... Donald H. Taylor, Chairman of the Learning and Performance Institute will be the ...
(Date:4/26/2017)... April 26, 2017  Genisphere LLC, provider of ... signed a collaborative and sponsored research agreement with ... Muro . The overall goal of the partnership ... various 3DNA designs and formulations after in ... of the vasculature as well as inflammatory responses, ...
(Date:4/25/2017)... , ... April 25, 2017 , ... ... leading supplier of Common Lisp (CL) development tools, and market leader for ... includes key performance enhancements now available within the most effective system for developing ...
Breaking Biology Technology:
(Date:3/22/2017)... LIVERMORE, Calif. , March 21, 2017 ... recognition analytics company serving law enforcement agencies, announced today ... Sheridan as director of public safety business development. ... of diversified law enforcement experience, including a focus on ... Vigilant. In his most recent position, Mr. Sheridan served ...
(Date:3/13/2017)... Future of security: Biometric Face Matching software  ... ... DERMALOGs Face Matching enables to match face pictures against each other or against ... (PRNewsFoto/Dermalog Identification Systems) ... Matching" is the fastest software for biometric Face Matching on the market. The ...
(Date:3/7/2017)... 7, 2017   HireVue , the leading provider ... identify the best talent, faster, today announced the additions ... (CSO) and Diana Kucer as Chief Marketing ... executive team poised to drive continued growth in the ... year of record bookings in 2017. "Companies ...
Breaking Biology News(10 mins):