Navigation Links
Young's experiment in a hydrogen molecule

An international investigation involving the participation of the Consejo Superior de Investigaciones Cientficas (CSIC) has reproduced the experiment of Thomas Young in a molecule of hydrogen, the smallest molecular system that exists. In 1803 the English scientist tested a pattern of interferences in light from a distant source, on passing through a double slit and thus being refracted. This finding confirmed the theory that light had wave motion properties. The authors of this current research, which appears in the latest issue of the journal Science, uses electrons instead of light and the nuclei of the hydrogen molecule as emitting slits.

CSIC researcher Ricardo Dez, Vicedirector of the Centre for Materials Physics (a mixed body of the CSIC and the University of the Basque Country in Donostia-San Sebastin and co-author of the article, explains their experiment: These interference patterns are the same as those produced, on a large scale, when sunlight passes through Persian blinds, throwing shadow patterns and, as it were, games, on the walls. This phenomenon is due to the fact that (light) particles, as with electrons, can also have wave motion behaviour.

At much smaller sizes, atomic planes can create interferences in the transmission of X rays, thus providing information about the internal structure of materials. This is the fundamental basis of the experimental techniques such as X ray diffraction, thanks to which the DNA double helix structure was discovered. Ricardo Dez explains, The Laws that predict, for example, the trajectory of a car at a certain speed are not those that govern the behaviour of atomic-sized particles. On a nanometric scale sizes are measured in units a thousand million times smaller than a metre, and the behaviour of objects at this scale can prove to be surprising, almost magical even!

The experiment

The researchers reproduced Youngs experiment in the smallest system existing - a molecule of hydrogen -, which consists of two protons and two electrons. The research team used light generated by the large synchrotron accelerator at the Lawrence Berkeley National Laboratory (USA), to extract the two electrons from the molecule of hydrogen. The two protons carry out the role of the two electron-emitting apertures, separated by an extremely small distance ten thousand millionths of a metre. On its journey to the detector, where they are collected, each one of the electrons shows an interference pattern that suggests wave nature rather than particle motion, and as if emission had taken place from the two points at the same time.

The interference pattern of each one of the two electrons extracted from the molecule is conditioned by the presence and the velocity of the other: the greater the difference in their speeds, the less the interaction between them and the more visible the interference patterns. Under these conditions, the system is more of a quantum nature.

The analysis of the patterns as a function of velocity enables the investigation of the subtle mechanisms of the transition between classical physics and quantum physics. It is necessary to understand the quantum relationship between a small number of electrons, such as those of hydrogen, as it is the basis of concepts as sophisticated as quantum cryptography or of the future development of quantum computation, concluded the CSIC researcher.


Contact: Garazi Andonegi
Elhuyar Fundazioa

Related biology technology :

1. NanoLogix Inc. Announces Historical First in Energy Generation With Bioreactor-Produced Hydrogen at Welchs
2. New Study Shows Promise for Hydrogen Sulfide in Reducing Heart-Attack Damage, Ikaria Announces
3. Heavier hydrogen on the atomic scale reduces friction
4. Molecules line up to make the tiniest of wires
5. When proteins, antibodies and other biological molecules kiss, a new kind of biosensor can tell
6. When proteins, antibodies and other biological molecules kiss, a new kind of biosensor can tell
7. BioNanomatrix Announces Issuance of Key Nanofluidics Patent Enabling Single Molecule Whole Genome Analysis
8. Abbott Scientists Create One Molecule With Two Antibody Functions
9. Reverse Cholesterol Transport by RVX-208 a Small Molecule for ApoA-I Production Increase Presented at American Heart Association Scientific Meeting
Post Your Comments:
(Date:10/10/2017)... ... 2017 , ... For the second time in three years, ... Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October 10th, ... mission is to change the trajectory of STEM education in America by dramatically ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life ... for the life sciences and healthcare industries, announces a presentation by Subbu Viswanathan ... The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary ...
(Date:10/9/2017)... Charlotte, N.C. (PRWEB) , ... October 09, 2017 , ... ... Purple announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and ... Dr. Stubbs was a member of the winning team for the 2015 Breakthrough Prize ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first commercially available ... bioinformatics software to perform Hi-C metagenome deconvolution using their own facilities, supplementing ...
Breaking Biology Technology:
(Date:6/14/2017)... 15, 2017  IBM (NYSE: IBM ) is introducing several ... dedicated to developing collaboration between startups and global businesses, taking ... During the event, nine startups will showcase the solutions they ... industries. France is ... with a 30 percent increase in the number of startups ...
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
(Date:4/13/2017)... , April 13, 2017 According to a new ... Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, ... IAM Market is expected to grow from USD 14.30 Billion in 2017 ... (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):