Navigation Links
York U molecular communication researchers send world's first text message using vodka
Date:12/18/2013

TORONTO, Dec. 18, 2013 After successfully text messaging 'O Canada' using evaporated vodka, two York University researchers and their UK-based counterpart say their simple system can be used where conventional wireless technology fails.

"Chemical signals can offer a more efficient way of transmitting data inside tunnels, pipelines or deep underground structures. For example, the recent massive clog in London sewer system could have been detected earlier on, and without all the mess workers had to deal with, sending robots equipped with a molecular communication system," says Professor Andrew Eckford, in whose lab in the Department of Electrical Engineering and Computer Science located in Lassonde School of Engineering, the experiment was conducted.

The chemical signal, using the alcohol found in vodka in this case, was sent four metres across the lab with the aid of a tabletop fan. It was then demodulated by a receiver which measured the rate of change in concentration of the alcohol molecules, picking up whether the concentration was increasing or decreasing.

"We believe we have sent the world's first text message to be transmitted entirely with molecular communication, controlling concentration levels of the alcohol molecules, to encode the alphabets with single spray representing bit 1 and no spray representing the bit 0," says York U doctoral candidate Nariman Farsad, who led the experiment.

Though use of chemical signals is a new method in human communication technology, the biocompatible method is very common in the animal kingdom. Bees for example use chemicals in pheromones when there is a threat to the hive, and so do the Canadian lnyx, when marking territories.

In an article, Tabletop Molecular Communication: Text Messages Through Chemical Signals, in the peer-reviewed journal PLOS ONE, the researchers say their system also fills a major gap in the molecular communication literature, by providing an inexpensive platform for testing theoretical models. This allows researchers to gain real-world experience with molecular communication, cheaply and easily.

"Our system shows that reliable communication is possible and our work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for molecular communication systems," says Engineering Professor Weisi Guo at the University of Warwick, who initiated the research during a meeting with Eckford, last year. He adds, "They can also be used to communicate on the nanoscale, for example in medicine where recent advances mean it's possible to embed sensors into the organs of the body or create miniature robots to carry out a specific task such as targeting drugs to cancer cells."


'/>"/>

Contact: Gloria Suhasini
suhasini@yorku.ca
416-736-2100 x22094
York University
Source:Eurekalert

Related biology technology :

1. A nano car with molecular 4-wheel drive
2. Amsterdam Molecular Therapeutics Provides Business Update for the Third Quarter 2011
3. Chemists become molecular sculptors, synthesizing tiny, molecular traps
4. Why Medicare Carrier Proposes Major Changes in the Handling of Code Stacked Molecular Test Claims is Topic of December 20 Audio Conference
5. Amsterdam Molecular Therapeutics Announces Negative Equity Position
6. Quanterix Develops Microfluidic Consumable That Will Enable Next Generation Molecular Diagnostic Systems based on Single Molecule Array Technology
7. The art of molecular carpet-weaving
8. Amsterdam Molecular Therapeutics Announces € 2.5 Million Equity Raise
9. Amsterdam Molecular Therapeutics Receives US Orphan Designation for Hemophilia B Gene Therapy
10. Life Technologies Partners With DaAn Gene to Develop and Commercialize Molecular Diagnostic Assays in China
11. Accelerate Brain Cancer Cure and Exosome Diagnostics Collaborate to Advance Clinical Studies of Exosome Biofluid Molecular Diagnostics Technology in Brain Cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of ... the Cary 5000 and the 6000i models are higher end machines that use the ... of the spectrophotometer’s light beam from the bottom of the cuvette holder. , ...
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
Breaking Biology Technology:
(Date:5/24/2016)... 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology to ... display is the latest premium product recently added to the range of products distributed ... ... ... Imaging- LCD Medical Display- Ampronix News ...
(Date:5/12/2016)... -- WearablesResearch.com , a brand of Troubadour Research ... the Q1 wave of its quarterly wearables survey. A ... to a program where they would receive discounts for ... "We were surprised to see that so ... , CEO of Troubadour Research, "primarily because there are ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
Breaking Biology News(10 mins):