Navigation Links
Yale scientists make 2 giant steps in advancement of quantum computing
Date:9/26/2007

New Haven, Conn. Two major steps toward putting quantum computers into real practice sending a photon signal on demand from a qubit onto wires and transmitting the signal to a second, distant qubit have been brought about by a team of scientists at Yale. The accomplishments are reported in sequential issues of Nature on September 20 and September 27, on which it is highlighted as the cover along with complementary work from a group at the National Institute of Standards and Technologies.

Over the past several years, the research team of Professors Robert Schoelkopf in applied physics and Steven Girvin in physics has explored the use of solid-state devices resembling microchips as the basic building blocks in the design of a quantum computer. Now, for the first time, they report that superconducting qubits, or artificial atoms, have been able to communicate information not only to their nearest neighbor, but also to a distant qubit on the chip.

This research now moves quantum computing from having information to communicating information. In the past information had only been transferred directly from qubit to qubit in a superconducting system. Schoelkopf and Girvins team has engineered a superconducting communication bus to store and transfer information between distant quantum bits, or qubits, on a chip. This work, according to Schoelkopf, is the first step to making the fundamentals of quantum computing useful.

The first breakthrough reported is the ability to produce on demand and control single, discrete microwave photons as the carriers of encoded quantum information. While microwave energy is used in cell phones and ovens, their sources do not produce just one photon. This new system creates a certainty of producing individual photons.

It is not very difficult to generate signals with one photon on average, but, it is quite difficult to generate exactly one photon each time. To encode quantum information on photons, you want there to be exactly one, according to postdoctoral associates Andrew Houck and David Schuster who are lead co-authors on the first paper.

We are reporting the first such source for producing discrete microwave photons, and the first source to generate and guide photons entirely within an electrical circuit, said Schoelkopf.

In order to successfully perform these experiments, the researchers had to control electrical signals corresponding to one single photon. In comparison, a cell phone emits about 1023 (100,000,000,000,000,000,000,000) photons per second. Further, the extremely low energy of microwave photons mandates the use of highly sensitive detectors and experiment temperatures just above absolute zero.

In this work we demonstrate only the first half of quantum communication on a chip quantum information efficiently transferred from a stationary quantum bit to a photon or flying qubit, says Schoelkopf. However, for on-chip quantum communication to become a reality, we need to be able to transfer information from the photon back to a qubit.

This is exactly what the researchers go on to report in the second breakthrough. Postdoctoral associate Johannes Majer and graduate student Jerry Chow, lead co-authors of the second paper, added a second qubit and used the photon to transfer a quantum state from one qubit to another. This was possible because the microwave photon could be guided on wires similarly to the way fiber optics can guide visible light and carried directly to the target qubit. A novel feature of this experiment is that the photon used is only virtual, said Majer and Chow, winking into existence for only the briefest instant before disappearing.

To allow the crucial communication between the many elements of a conventional computer, engineers wire them all together to form a data bus, which is a key element of any computing scheme. Together the new Yale research constitutes the first demonstration of a quantum bus for a solid-state electronic system. This approach can in principle be extended to multiple qubits, and to connecting the parts of a future, more complex quantum computer.

However, Schoelkopf likened the current stage of development of quantum computing to conventional computing in the 1950s, when individual transistors were first being built. Standard computer microprocessors are now made up of a billion transistors, but first it took decades for physicists and engineers to develop integrated circuits with transistors that could be mass produced.


'/>"/>

Contact: Janet Rettig Emanuel
janet.emanuel@yale.edu
203-432-2157
Yale University
Source:Eurekalert

Related biology technology :

1. UW computer scientists fighting computer virus "Cold War"
2. Scientists find way to make human collagen in lab
3. Wisconsin scientists to be recognized for innovative biofuel technology
4. UW-Madison scientists to mimic nature for newest cancer drugs
5. UW scientists study strange material with communications potential
6. Scientists find nanotech method for examining cells
7. UW space scientists use Keck telescope to study wild weather of Uranus
8. UW computer scientists tout achievements and explain industry shortcomings
9. Facing shortage of U.S. scientists, UW wants to boost math enrollment
10. UW-Madison scientists find a key to cell division
11. TIP/UW Scientists Provide Mars Rover Commentary
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... , Jan. 18, 2017 Acupath Laboratories, ... announces the formation of an Executive Committee that will ... beyond. John Cucci , a 15-year ... from Director of Business Development to Chief Sales ... Mr. Cucci served in senior sales leadership roles at ...
(Date:1/18/2017)... --  Boston Biomedical , an industry leader in the ... pathways, will feature data from two clinical studies for ... Gastrointestinal Cancers Symposium, held from January 19-21, in ... is an orally-administered investigational agent designed to inhibit cancer ... cells (CSCs) possess the property of stemness – the ...
(Date:1/18/2017)... ... 18, 2017 , ... Total Orthopedics and Sports Medicine ( ... The operation took place on Wednesday, January 11, 2017 at Long Island Jewish, ... cervical discectomy and fusion on a 42 year old female who was in ...
(Date:1/18/2017)... ... January 18, 2017 , ... Researchers from a new study are stating ... low enough after prostate cancer treatment, this indicates there is still remaining prostate cancer cells ... , “ The PSA test has always been an indicator of whether a man’s prostate ...
Breaking Biology Technology:
(Date:12/19/2016)... y TORONTO , 19 de diciembre de 2016 ... Inc. que permitirá el desarrollo acelerado de MSC-1, un anticuerpo humanizado ... tipos de tumor en 2017, con múltiples sitios previstos a lo ... ... objetivo en el factor inhibidor de leucemia (LIF), una citoquina pleiotrópica ...
(Date:12/15/2016)... Dec. 15, 2016   WaferGen Bio-systems, Inc. ... technology company, announced today that on December 13, 2016, ... of The Nasdaq Stock Market LLC which acknowledged that, ... of WaferGen,s common stock had been at $1.00 or ... regained compliance with Listing Rule 5550(a)(2) of the Nasdaq ...
(Date:12/12/2016)... 12, 2016  Researchers at Trinity College, Dublin, ... by combining the material with Silly Putty. The mixture ... detector able to sense pulse, blood pressure, respiration, ... The research team,s findings were ... here:  http://science.sciencemag.org/content/354/6317/1257 ...
Breaking Biology News(10 mins):