Navigation Links
What can happen when graphene meets a semiconductor
Date:11/22/2013

For all the promise of graphene as a material for next-generation electronics and quantum computing, scientists still don't know enough about this high-performance conductor to effectively control an electric current.

Graphene, a one-atom-thick layer of carbon, conducts electricity so efficiently that the electrons are difficult to control. And control will be necessary before this wonder material can be used to make nanoscale transistors or other devices.

A new study by a research group at the University of Wisconsin-Milwaukee (UWM) will help. The group has identified new characteristics of electron transport in a two-dimensional sheet of graphene layered on top of a semiconductor.

The researchers demonstrated that when electrons are rerouted at the interface of the graphene and its semiconducting substrate, they encounter what's known as a Schottky barrier. If it's deep enough, electrons don't pass, unless rectified by applying an electric field a promising mechanism for turning a graphene-based device on and off.

The group also found, however, another feature of graphene that affects the height of the barrier. Intrinsic ripples form on graphene when it is placed on top of a semiconductor.

The research group, led by Lian Li and Michael Weinert, UWM professors of physics, and Li's graduate student Shivani Rajput, conducted their experiment with the semiconductor silicon carbide. The results were published in the Nov. 21 issue of Nature Communications.

The ripples are analogous to the waviness of a sheet of paper that has been wetted and then dried. Except in this case, notes Weinert, the thickness of the sheet is less than one nanometer (a billionth of a meter).

"Our study says that ripples affect the barrier height and even if there's a small variation in it, the results will be a large change in the electron transport," says Li.

The barrier needs to be the same height across the whole sheet in order to ensure that the current is either on or off, he adds.

"This is a cautionary tale," says Weinert, whose calculations provided the theoretical analysis. "If you're going to use graphene for electronics, you will encounter this phenomenon that you will have to engineer around."

With multiple conditions affecting the barrier, more work is necessary to determine which semiconductors would be best suited to use for engineering a transistor with graphene.

The work also presents opportunity. The ability to control the conditions impacting the barrier will allow conduction in three dimensions, rather than along a simple plane. This 3D conduction will be necessary for scientists to create more complicated nano-devices, says Weinert.


'/>"/>

Contact: Lian Li
lianli@uwm.edu
414-229-5108
University of Wisconsin - Milwaukee
Source:Eurekalert  

Related biology technology :

1. Remarkable Bed Bug Spray Plus Pictures of Bed Bugs Reduce Pest-Control Expense by 50%, My Cleaning Products Explains How It Happened
2. Infrared vision lets researchers see through -- and into -- multiple layers of graphene
3. UT Austin researchers grow large graphene crystals that have exceptional electrical properties
4. New techniques produce cleanest graphene yet
5. Researchers advance scheme to design seamless integrated circuits etched on graphene
6. Understanding interface properties of graphene paves way for new applications
7. Controlling magnetic clouds in graphene
8. Diamonds, nanotubes find common ground in graphene
9. Graphene joins the race to redefine the ampere
10. How graphene and friends could harness the Suns energy
11. Graphenes high-speed seesaw
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
What can happen when graphene meets a semiconductor
(Date:9/21/2017)... ... September 21, 2017 , ... Lajollacooks4u welcomed the San ... The organization, a worldwide society of professional women with high achievement in the fields ... annual dinner. , Twelve members began with an olive oil tasting to ...
(Date:9/20/2017)... ... September 20, 2017 , ... Diversity focused business accelerator, ... Fueling the Growth pitch competition to uncover the top technology-driven, women-led startups in Boston, ... integral part of each city’s entrepreneurial events going on that week – in Boston, ...
(Date:9/20/2017)... ... , ... From industry leaders, sports stars, and Hollywood icons to thousands of ... people had lost all hope. Their stories are told here. , Chapter ... , “Neil takes readers on a riveting journey through the past, present and future ...
(Date:9/19/2017)... ... September 19, 2017 , ... Participants of this educational ... fume hood. Along with the advantages and disadvantages of ductless, filtered fume hoods, ... in the laboratory. , Attendees will learn from an industry expert about the ...
Breaking Biology Technology:
(Date:5/23/2017)... first robotic gym for the rehabilitation and functional motor sense evaluation of ... Italy . The first 30 robots will be available from June ... . The technology was developed and patented at the IIT laboratories and ... thanks to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:4/19/2017)... April 19, 2017 The global ... landscape is marked by the presence of several large ... held by five major players - 3M Cogent, NEC ... accounted for nearly 61% of the global military biometric ... in the global military biometrics market boast global presence, ...
(Date:4/11/2017)... GARDENS, Fla. , April 11, 2017 /PRNewswire/ ... management and secure authentication solutions, today announced that ... by Intelligence Advanced Research Projects Activity (IARPA) to ... IARPA,s Thor program. "Innovation has been ... and IARPA,s Thor program will allow us to ...
Breaking Biology News(10 mins):