Navigation Links
Watching crystals grow provides clues to making smoother, defect-free thin films
Date:1/23/2010

To make thin films for semiconductors in electronic devices, layers of atoms must be grown in neat, crystalline sheets. But while some materials grow smooth crystals, others tend to develop bumps and defects a serious problem for thin-film manufacturing.

In the online edition of the journal Science (Jan. 22, 2010), Cornell researchers shed new light on how atoms arrange themselves into thin films. Led by assistant professor of physics Itai Cohen, they recreated conditions of layer-by-layer crystalline growth using particles much bigger than atoms, but still small enough that they behave like atoms.

"These particles are big and slow enough that you can see what's going on in real time," explained graduate student Mark Buckley. Using an optical microscope, the scientists could watch exactly what their "atoms" actually, micron-sized silica particles suspended in fluid did as they crystallized. What's more, they were able to manipulate single particles one at a time and test conditions that lead to smooth crystal growth. In doing so, they discovered that the random darting motion of the particles is a key factor that affects how the crystals grow.

A major challenge to growing thin films with atoms is that the atoms often form mounds, rather than crystallizing into thin sheets. This happens because as atoms are deposited onto a substrate, they initially form small crystals, called islands. When more atoms are dumped on top of these crystals, the atoms tend to stay atop the islands, rather than hopping off the edges - as though there were a barrier on the crystals' edges. This creates the pesky rough spots, "and it's game over" for a perfect thin film, Cohen said.

Conventional theory says that atoms that land on top of islands feel an energetic "pull" from other atoms that keeps them from rolling off. In their colloidal system, the researchers eliminated this pull by shortening the bonds between their particles. But they still saw that their particles hesitated at the islands' edges.

Further analysis using optical tweezers that manipulated individual particles allowed the researchers to measure just how long it took for particles to move off the crystal islands. Because the particles were suspended in a fluid, they were knocked about in what's called Brownian motion, which is like a random walk.

As the particles moved and diffused from one area to another, the researchers noted that the distance a particle had to travel to "fall" off an island's edge was three times farther than moving laterally from one site on the island to another.

And because the particles had to go this distance in a Brownian fashion, it took them nine times longer to complete this "fall." This difference in time explained why the researchers still saw a barrier at their island edges.

Atoms on a crystalline film move in a manner similar to Brownian particles, since the vibrations of the underlying crystal, called phonons, tend to jostle them about. The researchers surmised that in addition to the bonding between the atoms, this random motion may also contribute to the barrier at the crystals' edges, and hence the roughness in the crystal film.

"If the principles we have uncovered can be applied to the atomic scale, scientists will be able to better control the growth of thin films used to manufacture electronic components for our computers and cell phones," Cohen said.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology technology :

1. Strain on nanocrystals could yield colossal results
2. Physicists discover important step for making light crystals
3. New imaging technique reveals the atomic structure of nanocrystals
4. Silicon photonic crystals key to optical cloaking, researchers say
5. 3-D photonic crystals will revolutionize telecommunications
6. Discovery provides new drug targets for malaria cure
7. BioMS Medical provides corporate update
8. Access Pharmaceuticals Provides Update on MuGard Commercial Launch in Europe
9. PDL BioPharma Provides Fourth Quarter 2009 Revenue Guidance of Approximately $57 Million
10. Sangamo BioSciences Provides Update on Phase 1 Safety Trial of SB-728-T for HIV/AIDS
11. AMT Provides Business Update for the Third Quarter 2009
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:7/18/2017)... Fairfield, NJ (PRWEB) , ... July 18, 2017 ... ... in corporate finance technology, DataForm Software ( https://dataformsoftware.com ) announces the migration of ... – to Microsoft Azure. Planet is a team-centric, enterprise work management system that ...
(Date:7/17/2017)... ... July 17, 2017 , ... ... software company AB Cube has joined its eHealth App xChange ™, ... innovation across life sciences and healthcare. Under the partnership, AB Cube’s comprehensive, ...
(Date:7/17/2017)... ... 17, 2017 , ... Panitch Schwarze Belisario & Nadel ... BiG (Biomedical Innovation Group) annual meeting in China. , This year’s meeting, held ... T-cell) therapy, a rapidly developing highly personalized anti-cancer technology that involves removing some ...
(Date:7/16/2017)... ... 2017 , ... OHAUS Corporation, a leading worldwide manufacturer of ... line of Rocking and Waving Shakers today. , Five New Models Available , ... for laboratory applications in a variety of environmental conditions. Rocking shakers provide a ...
Breaking Biology Technology:
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:4/4/2017)... 4, 2017   EyeLock LLC , a leader ... United States Patent and Trademark Office (USPTO) has issued ... linking of an iris image with a face image ... the company,s 45 th issued patent. ... timely given the multi-modal biometric capabilities that have recently ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, ... Hack the Genome hackathon at Microsoft,s headquarters ... two-day competition will focus on developing health and wellness ... Hack the Genome is the first ... tremendous. The world,s largest companies in the genomics, tech ...
Breaking Biology News(10 mins):