Navigation Links
Using a grating with a grade, engineers trap a rainbow

Engineers working in optical communications bear more than a passing resemblance to dreamers chasing rainbows.

They may not wish literally to capture all the colors of the spectrum, but they do seek to control the rate at which light from across the spectrum moves through optical circuits.

This pursuit is daunting when those circuits contain dimensions measured in nanometers.

At the nanoscale, says Qiaoqiang Gan, a Ph.D. candidate in electrical engineering at Lehigh University in Bethlehem, Pa., engineers hoping to integrate optical structures with electronic chips face a dilemma.

Light waves transmit data with greater speed and control than do electrical signals, which are hindered by the mobility of the electrons in semiconducting materials.

But light is more difficult to control at the nanoscale because of natural limits on its diffraction, or ability to resolve.

"There is a mismatch between nanoelectronics and nanophotonics," says Gan. "Because of the diffraction limit of light, optical circuits are now much larger than their electronic counterparts. This poses an obstacle to the integration of optical structures with electrical devices.

"For that reason, the dream now among photonics researchers is to make optical structures as small as possible and integrate them with electrical devices."

Gan and his colleagues have made a major contribution towards this effort by developing a relatively simple structure that can slow down or even stop light waves over a wide portion of the light spectrum.

On Friday, June 27, they published an article describing their progress in Physical Review Letters (PRL), a publication of the American Physical Society. PRL is one of the most influential international journals devoted to basic physics.

The article, titled "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," is coauthored by Gan, Zhan Fu, Yujie Ding and Filbert Bartoli. Fu is a Ph.D. candidate in electrical engineering, Ding is a professor of electrical and computer engineering, and Bartoli is professor and department chair of electrical and computer engineering. Bartoli is Gan's adviser, while Ding advises Fu.

The structure developed by his team, says Gan, has the unique ability to arrest the progress of terahertz (THz) light waves at multiple locations on the structure's surface and also at different frequencies.

"Previous researchers have reported the ability to slow down one single wavelength at one narrow bandwidth," says Gan. "We've succeeded in actually stopping THz waves at different positions for different frequencies.

"Our next goal is to develop structures that extend this capability to the near infrared and visible ranges of the spectrum, where optical communications signals are transferred."

The Lehigh researchers report in PRL that their key innovation is a "metallic grating structure with graded depths, whose dispersion curves and cutoff frequencies are different at different locations."

In appearance, this grate resembles the pipes of a pipe organ arranged side by side and decreasing gradually in length from one end of the assembly to the other.

The degree of grade in the metal grate can be "tuned," says Gan, by altering the temperature and modifying the physical features on the surface of the structure.

Likewise, he says, temperature and surface structure can also be adjusted to trigger the release of the light signals after they have been slowed or trapped.

"The separation between the adjacent localized frequencies can be tuned freely by changing the grade of the grating depths," Gan says. "And the propagation characteristics of the trapped surface modes can be controlled by the surface geometry."

By "opening a door to the control of light waves on a chip," says Bartoli, the new Lehigh grating structure could help scientists and engineers reduce the size of optical structures so they can be integrated at the nanoscale with electronic devices.

"Our grating structure can also be scaled to telecommunications frequencies for future possible applications in integrated optical and nano-photonic circuits," he says.

"This might even help us realize such novel applications as a spectrometer integrated on a chip for chemical diagnostics, spectroscopy and signal processing applications."

Gan, who holds an M.S. in electrical engineering from the Chinese Academy of Sciences in Beijing and a B.S. in materials science and engineering from Fudan University in Shanghai, has used computer modeling to develop and test the grating structure. He will begin soon to work with Ding to conduct physical experiments. Ding has made significant progress in generating THz radiation.

It was after reading an article by another researcher in the field that Gan and Fu came up with the idea of developing graded grating structures to trap and slow light waves.

"The other researcher was attempting to use a cylindrical structure to focus light waves into a subwavelength scale for a THz scanning microscope," he says. "We simplified the cylinder to a grating structure and realized that incoming light waves would be trapped at various points across the grade."


Contact: Kurt Pfitzer
Lehigh University

Related biology technology :

1. Genzyme Boosts Quality Using Dyadem Quality Lifecycle Management
2. Iowa Resident Dies After Using Contaminated Blood Thinner
3. SurgiQuest Announces First Single Port Procedure for Ovary Removal Using AirSeal(TM) Access System
4. Cypress Systems, Inc. Launches Cancer Prevention Health Campaign Using SelenoExcell(R)
5. RiverVest Venture Partners(R), a St. Louis-Based Venture Capital Firm Focusing on Life Sciences, Closes on Fund II, Names John P. McKearn, Ph.D., Venture Partner
6. Data storage using ultra-small needles
7. Engineers make first active matrix display using nanowires
8. Significant Reductions in Mortality and Cardiovascular Events Shown Using Blood Pressure-Lowering Treatment in Those Aged 80 and Over
9. Accurate Identification of Tumor Origin Using MicroRNAs is Published by Rosetta Genomics Scientists and Collaborators in Nature Biotechnology
10. 125 Indevus Sales Representatives to Provide Community Service in New Orleans for Jericho Road Episcopal Housing Initiative
11. Allen Institute for Brain Science Launches Three New Landmark Atlas Projects Focusing on the Human Brain, Developing Brain and Spinal Cord
Post Your Comments:
(Date:10/12/2015)... , Oct. 12, 2015 VolitionRx Limited ... a completed clinical study of its NuQ ® blood-based ... the online issue of Clinical Epigenetics , the official ... conducted in collaboration with Lund University, ... Andersson , MD, PhD, Professor of Surgery and Vice-Dean, Faculty ...
(Date:10/11/2015)... ... October 11, 2015 , ... ... has been officially launched and multiple surgeries have been completed with this new ... of the Neuroscience & Spine Center of the Carolinas. The Revolution™ Spinal ...
(Date:10/9/2015)... -- Governor Tom Wolf announced today that ... developing T-cell receptor cancer immunotherapy treatments, will create at ... project. Pennsylvania , and today,s ... new, high-paying jobs will be created with this project," ... includes sustained funding for the life science sector and ...
(Date:10/9/2015)... ... October 09, 2015 , ... From blood to food ... those cells from their surroundings for research, diagnostics, and cell therapy—also known as ... this, Ann Arbor-based startup Akadeum Life Sciences is developing a radically ...
Breaking Biology Technology:
(Date:10/5/2015)... ) releases ... (NASDAQ: NXTD ), a biometric authentication company focused ... ) releases the following market and ... a biometric authentication company focused on the growing mobile ... ) releases the following market and ...
(Date:10/1/2015)... Oct. 1, 2015  Biometrics includes diverse set ... body characteristics, such as fingerprints, eye retinas, facial ... of biometrics technology has been constantly increasing in ... five years. In addition to the most prominent ... recognition, other means of biometric authentication are rapidly ...
(Date:9/30/2015)... , Sept. 30, 2015  The U.S. Court of ... another key ruling in favor of Crossmatch ™, ... fingerprint scanner company Suprema and its U.S. partner Mentalix ... a trade provision that declares it unlawful to engage ... infringing two of Crossmatch,s patents, the 5,900,993 patent and ...
Breaking Biology News(10 mins):