Navigation Links
Using a grating with a grade, engineers trap a rainbow
Date:6/27/2008

Engineers working in optical communications bear more than a passing resemblance to dreamers chasing rainbows.

They may not wish literally to capture all the colors of the spectrum, but they do seek to control the rate at which light from across the spectrum moves through optical circuits.

This pursuit is daunting when those circuits contain dimensions measured in nanometers.

At the nanoscale, says Qiaoqiang Gan, a Ph.D. candidate in electrical engineering at Lehigh University in Bethlehem, Pa., engineers hoping to integrate optical structures with electronic chips face a dilemma.

Light waves transmit data with greater speed and control than do electrical signals, which are hindered by the mobility of the electrons in semiconducting materials.

But light is more difficult to control at the nanoscale because of natural limits on its diffraction, or ability to resolve.

"There is a mismatch between nanoelectronics and nanophotonics," says Gan. "Because of the diffraction limit of light, optical circuits are now much larger than their electronic counterparts. This poses an obstacle to the integration of optical structures with electrical devices.

"For that reason, the dream now among photonics researchers is to make optical structures as small as possible and integrate them with electrical devices."

Gan and his colleagues have made a major contribution towards this effort by developing a relatively simple structure that can slow down or even stop light waves over a wide portion of the light spectrum.

On Friday, June 27, they published an article describing their progress in Physical Review Letters (PRL), a publication of the American Physical Society. PRL is one of the most influential international journals devoted to basic physics.

The article, titled "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," is coauthored by Gan, Zhan Fu, Yujie Ding and Filbert Bartoli. Fu is a Ph.D. candidate in electrical engineering, Ding is a professor of electrical and computer engineering, and Bartoli is professor and department chair of electrical and computer engineering. Bartoli is Gan's adviser, while Ding advises Fu.

The structure developed by his team, says Gan, has the unique ability to arrest the progress of terahertz (THz) light waves at multiple locations on the structure's surface and also at different frequencies.

"Previous researchers have reported the ability to slow down one single wavelength at one narrow bandwidth," says Gan. "We've succeeded in actually stopping THz waves at different positions for different frequencies.

"Our next goal is to develop structures that extend this capability to the near infrared and visible ranges of the spectrum, where optical communications signals are transferred."

The Lehigh researchers report in PRL that their key innovation is a "metallic grating structure with graded depths, whose dispersion curves and cutoff frequencies are different at different locations."

In appearance, this grate resembles the pipes of a pipe organ arranged side by side and decreasing gradually in length from one end of the assembly to the other.

The degree of grade in the metal grate can be "tuned," says Gan, by altering the temperature and modifying the physical features on the surface of the structure.

Likewise, he says, temperature and surface structure can also be adjusted to trigger the release of the light signals after they have been slowed or trapped.

"The separation between the adjacent localized frequencies can be tuned freely by changing the grade of the grating depths," Gan says. "And the propagation characteristics of the trapped surface modes can be controlled by the surface geometry."

By "opening a door to the control of light waves on a chip," says Bartoli, the new Lehigh grating structure could help scientists and engineers reduce the size of optical structures so they can be integrated at the nanoscale with electronic devices.

"Our grating structure can also be scaled to telecommunications frequencies for future possible applications in integrated optical and nano-photonic circuits," he says.

"This might even help us realize such novel applications as a spectrometer integrated on a chip for chemical diagnostics, spectroscopy and signal processing applications."

Gan, who holds an M.S. in electrical engineering from the Chinese Academy of Sciences in Beijing and a B.S. in materials science and engineering from Fudan University in Shanghai, has used computer modeling to develop and test the grating structure. He will begin soon to work with Ding to conduct physical experiments. Ding has made significant progress in generating THz radiation.

It was after reading an article by another researcher in the field that Gan and Fu came up with the idea of developing graded grating structures to trap and slow light waves.

"The other researcher was attempting to use a cylindrical structure to focus light waves into a subwavelength scale for a THz scanning microscope," he says. "We simplified the cylinder to a grating structure and realized that incoming light waves would be trapped at various points across the grade."


'/>"/>

Contact: Kurt Pfitzer
kap4@lehigh.edu
610-758-3017
Lehigh University
Source:Eurekalert

Related biology technology :

1. Genzyme Boosts Quality Using Dyadem Quality Lifecycle Management
2. Iowa Resident Dies After Using Contaminated Blood Thinner
3. SurgiQuest Announces First Single Port Procedure for Ovary Removal Using AirSeal(TM) Access System
4. Cypress Systems, Inc. Launches Cancer Prevention Health Campaign Using SelenoExcell(R)
5. RiverVest Venture Partners(R), a St. Louis-Based Venture Capital Firm Focusing on Life Sciences, Closes on Fund II, Names John P. McKearn, Ph.D., Venture Partner
6. Data storage using ultra-small needles
7. Engineers make first active matrix display using nanowires
8. Significant Reductions in Mortality and Cardiovascular Events Shown Using Blood Pressure-Lowering Treatment in Those Aged 80 and Over
9. Accurate Identification of Tumor Origin Using MicroRNAs is Published by Rosetta Genomics Scientists and Collaborators in Nature Biotechnology
10. 125 Indevus Sales Representatives to Provide Community Service in New Orleans for Jericho Road Episcopal Housing Initiative
11. Allen Institute for Brain Science Launches Three New Landmark Atlas Projects Focusing on the Human Brain, Developing Brain and Spinal Cord
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... 2017 /PRNewswire/ -  GeneNews Limited (TSX:GEN) ("GeneNews" or the ... new risk stratification test for breast cancer, via its ... ("IDL"). BreastSentry incorporates a blood-based biomarker test with a sophisticated ... developing breast cancer.   ... BreastSentry measures the fasting plasma levels of ...
(Date:3/28/2017)... ... March 28, 2017 , ... NetDimensions announced ... processes and enhance training plan management for consistent implementation of standards and regulatory ... the SHL Group to help improve and streamline their training and employee development ...
(Date:3/28/2017)... ... March 28, 2017 , ... ... II Small Business Innovation Research (SBIR) grant from the National Science Foundation (NSF). ... two years to develop a suite of BioGel™ biopolymer materials for hygiene applications, ...
(Date:3/28/2017)... 28, 2017 Volition America, Inc., a wholly-owned U.S. ... engagement of Deborah Vollmer Dahlke , DrPH, CEO and ... Vollmer Dahlke,s role will be to assist the ... State of Texas and elsewhere in ... has significant experience over the past six years, helping ...
Breaking Biology Technology:
(Date:3/24/2017)... Research and Markets has announced the addition ... Trends - Industry Forecast to 2025" report to their offering. ... The Global Biometric ... of around 15.1% over the next decade to reach approximately $1,580 ... market estimates and forecasts for all the given segments on global ...
(Date:3/22/2017)... 21, 2017   Neurotechnology , a provider ... today announced the release of the SentiVeillance ... improved facial recognition using up to 10 surveillance, ... computer. The new version uses deep neural-network-based facial ... it utilizes a Graphing Processing Unit (GPU) for ...
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel ... came to the DERMALOG stand together with the Japanese Prime Minster Shinzo ... At the largest German biometrics company the two government leaders could see ... as well as DERMALOG´s multi-biometrics system.   Continue ... ...
Breaking Biology News(10 mins):