Navigation Links
University of Toronto chemists make breakthrough in nanoscience research

TORONTO, ON A team of scientists led by Eugenia Kumacheva of the Department of Chemistry at the University of Toronto has discovered a way to predict the organization of nanoparticles in larger forms by treating them much the same as ensembles of molecules formed from standard chemical reactions.

"Currently, no model exists describing the organization of nanoparticles," says Kumacheva. "Our work paves the way for the prediction of the properties of nanoparticle ensembles and for the development of new design rules for such structures."

The focus of nanoscience is gradually shifting from the synthesis of individual nanoparticles to their organization in larger structures. In order to use nanoparticle ensembles in functional devices such as memory storage devices or optical waveguides, it is important to achieve control of their structure.

According to the researchers' observations, the self-organization of nanoparticles is an efficient strategy for producing nanostructures with complex, hierarchical architectures. "The past decade has witnessed great progress in nanoscience particularly nanoparticle self-assembly yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge," she continues. "We report on the remarkable similarity between the self-assembly of metal nanoparticles and chemical reactions leading to the formation of polymer molecules. The nanoparticles act as multifunctional single units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a highly ordered polymer."

"We developed a new approach that enables a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures, their aggregation numbers and size distribution, and the formation of structural isomers."

Kumacheva was joined in the research by postdoctoral fellows Kun Liu, Nana Zhao and Wei Li, and former doctoral student Zhihong Nie, along with Professor Michael Rubinstein of the University of North Carolina. As polymer chemists, the team took an unconventional look at nanoparticle organization.

"We treated them as molecules, not particles, which in a process resembling a polymerization reaction, organize themselves into polymer-like assemblies," says Kumacheva. "Using this analogy, we used the theory of polymerization and predicted the architecture of the so-called 'molecules' and also found other, unexpected features that can find interesting applications."


Contact: Sean Bettam
University of Toronto

Related biology technology :

1. Bigge Helps Build New USTAR Complex at the University of Utah
2. University of Minnesota researchers clear major hurdle in road to high-efficiency solar cells
3. Sustainable Technology Company Cerealus and University of Maine Issued Patent for "Barrier Compositions and Articles"
4. Diversity Publication Names University Hospitals One of Top Hospital Systems in the Nation
5. Ben-Gurion University students develop device to help blind manuever
6. Hat-trick for University of Montreal scientists
7. University of Maryland School of Pharmacy Adopts BioSoteria's eLearning Drug Safety Courses
8. Colorado State University student awarded top student prize in laser research
9. Elekta / Mitsubishi Electric Collaboration Helps Japans Gunma University Heavy Ion Medical Center Launch Advanced Carbon Ion Therapy for Treating Cancer
10. The iBridge Network Adds Torontos University Health Network as First Canadian Partner
11. Zymes LLC, University of Windsor and National Research Council of Canada Collaborative Research Presented at the 2010 Experimental Biology Meeting in Anaheim, California
Post Your Comments:
(Date:11/24/2015)... India , November 24, 2015 ... a new market research report "Oligonucleotide Synthesis Market by ... Application (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, ... 2020", published by MarketsandMarkets, the market is expected to ... Million in 2015, at a CAGR of 10.1% during ...
(Date:11/24/2015)... 2015 SHPG ) announced today that ... Jaffray 27 th Annual Healthcare Conference in New ... 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ) ... participate in the Piper Jaffray 27 th Annual Healthcare Conference ... December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
(Date:11/24/2015)... ... 24, 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions for ... Aregger to serve as Chief Operating Officer. , Having joined InSphero in ... and was promoted to Head of InSphero Diagnostics in 2014. There she ...
Breaking Biology Technology:
(Date:10/26/2015)... and LAS VEGAS , Oct. 26, ... , an innovator in modern authentication and a founding ... the launch of its latest version of the Nok ... organizations to use standards-based authentication that supports existing and ... Authentication Suite is ideal for organizations deploying customer-facing applications ...
(Date:10/23/2015)... , Oct. 23, 2015 Research and ... the "Global Voice Recognition Biometrics Market 2015-2019" ... --> The global voice recognition biometrics ... 2014-2019. --> --> ... has been prepared based on an in-depth market analysis ...
(Date:10/22/2015)... Inc. (NASDAQ: AWRE ), a leading supplier of biometrics software ... September 30, 2015.  --> --> ... a decrease of 33% compared to $6.0 million in the same ... was $2.2 million, or $0.10 per diluted share, which compared to ... a year ago.  --> --> ...
Breaking Biology News(10 mins):