Navigation Links
University of Pennsylvania scientists move optical computing closer to reality
Date:8/19/2008

PHILADELPHIA - Scientists at the University of Pennsylvania have theorized a way to increase the speed of pulses of light that bound across chains of tiny metal particles to well past the speed of light by altering the particle shape. Application of this theory would use nanosized metal chains as building blocks for novel optoelectronic and optical devices, which would operate at higher frequencies than conventional electronic circuits. Such devices could eventually find applications in the developing area of high-speed optical computing, in which protons and light replace electrons and transistors for greater performance.

Colleagues in the Department of Bioengineering, Alexander A. Govyadinov and Vadim A. Markel, also of the Department of Radiology at Penn, published the study in a recent issue of the journal Physical Review B.

Recent developments in nanotechnology have enabled researchers to fabricate nanoparticle chains with great precision and fidelity. Penn's research team took advantage of this technological advance by utilizing metallic nanoparticles as a chain of miniature waveguides that exchange light.

Currently, the advance is theoretical. But, from a practical standpoint, the creation of a metallic nanochain would provide the combination of smaller-diameter optical components coupled with larger bandwidth, making them optimal wave guiding materials. As the velocity of the light pulse increases, so too does the operating bandwidth of a waveguide. Increasing the bandwidth helps to increase the number of information channels, allowing more information to flow simultaneously through a waveguide.

Researchers investigated changing the shape of particles in an attempt to increase this bandwidth. Spherically-shaped nanoparticles, the shape used almost exclusively in early research, provide narrow bandwidths of light. As Markel and Govyadinov discovered, shaping the particles as prolate, cigar-shaped or oblate, saucer-shaped, spheroids boosted the velocities of surface plasmon pulses reflecting off the surface to 2.5 times the speed of light in a vacuum.

Reshaping the nanoparticles therefore resulted in an enormous increase in the operating bandwidth of the waveguide. As an additional bonus, constructing the chains from oblate spheroids results in decreased power loss as well.

The exceptional combination of small size, large bandwidth and relatively small losses may make these useful as building blocks for the light-based devices of the future.

Researchers have used light and metal to create special electromagnetic wave of electrons on the surface called plasmons for years. Just as light travels through optical fibers, surface plasmons propagate along a chain of closely spaced, metallic particles with each particle acting like a miniature beacon, receiving a signal from its neighbor and transmitting it further along the chain. Although chains of metallic particles are not practical for long-range communication due to rapid power loss, they are well suited for optoelectronic and optical devices in which achieving a small overall size is important.

Markel and Govyadinov's theory may prove useful in overcoming sizing obstacles that complicate optics. Light cannot travel through an optical fiber if the fiber's diameter is smaller than a micron. A particle chain like the one proposed by Penn researchers, however, could be as thin as 50 nanometers in diameter, a few hundred times thinner than any optical fiber, and still guide the surface plasmon waves.

An interesting conundrum arises from the work. The theory of relativity prohibits anything from moving faster than light.

"But what is a 'thing'?" Markel said. "A very powerful flashlight directed at the moon would theoretically create a bright spot on its surface. By simply turning the flashlight sideways, the flashlight's beam streaks across the sky at speeds far exceeding the speed of light. This evidence has long been known and dismissed, since the bright spot cannot be used for superluminal, or faster-than-light communication, between the earth and the moon. The fast motion of the bright spot is simply a geometrical artifact, similar, in some ways, to the point at which the two blades of closing scissors intersect. The theory of relativity does not concern such purely geometrical objects."

The researchers believe there are, in fact, some superluminal "things" in nature. For example, it has been long theorized, and was demonstrated in a series of experiments in the last quarter of the 20th century, that electromagnetic pulses, or "wave packets," can propagate through material media with an overall velocity which is greater that the speed of light in vacuum. Although the superluminal wave packets cannot be used to transmit energy or information faster than the speed of light, and therefore do not contradict the theory of relativity, they are fascinating objects and can be utilized in optical communications.

The surface plasmon pulses discovered at Penn belong to the same class of superluminal wave packets. It is predicted that the superluminal properties of these pulses are much bolder than anything previously observed.


'/>"/>

Contact: Jordan Reese
jreese@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert

Related biology technology :

1. GlaxoSmithKline Recognizes University of Michigans Dr. Daniel F. Hayes as the First Recipient of the Gianni Bonadonna Breast Cancer Award
2. BioMarin Licenses Technology From Leading Cystic Fibrosis Research Laboratory at the University of California, San Francisco
3. Microchip Biotechnologies, Inc. Secures Exclusive License to Use New University of Alberta Technology for Developing Microfluidic Devices
4. Alliance for Medical Devices, Instrumentation and Diagnostics formed between Fraunhofer Center for Manufacturing Innovation and Boston University
5. The University of Nottingham in the British Midlands Announces Development of Possible Hepatitis C Vaccine
6. University of Leicester scientists discover technique to help friendly bacteria
7. MichBio Announces Student Career Day at Michigan State University
8. Dr. Thomas Van Dyke Renowned Boston University Professor Joins Imagenetixs Medical Advisory Board
9. University HealthSystem Consortium Chooses SciQuest to Optimize Medical Research Procurement
10. Helix Biopharma announces addition of University of Arizona professor Kenneth Hatch as new medical advisor
11. McGill University Purchases GenVaults Personal Archive System to Manage Rare Cancer Samples
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... N.J. , Dec. 8, 2016 Soligenix, ... biopharmaceutical company focused on developing and commercializing products to ... need, announced today that it will be hosting an ... am ET on the origins of innate defense regulators ... a review of oral mucositis and the recently announced ...
(Date:12/8/2016)... Savannah River Remediation LLC group evaluated ... NT-MAX Lake & Pond Sludge and Muck ... conjunction with Hexa Armor/ Rhombo cover manufactured by ... Discharge Elimination System requirements. The Savannah ... of elevated pH levels, above 8.5, especially during ...
(Date:12/8/2016)... Dec. 8, 2016  Partnering to fuel ... Technology Partners of Southeastern Pennsylvania ... parent company of Independence Blue Cross; and Safeguard Scientifics ... intentions for a $6 million funding initiative over a ... Responding to a burgeoning economic vitality in ...
(Date:12/7/2016)... , ... December 07, 2016 , ... ... its phase I/II dose escalation and expansion clinical trial for its lead drug ... Austria. The purpose of the trial was to determine the safety, antitumor activity, ...
Breaking Biology Technology:
(Date:12/5/2016)... WASHINGTON , Dec. 5, 2016  The ... (NIJ), today published "Can CT Scans Enhance or ... examines the potential of supporting or replacing forensic ... a CT scan. In response to ... NIJ is exploring using CT scans as a ...
(Date:11/30/2016)... Nov. 30, 2016  higi SH llc (higi) ... initiative targeting national brands, industry thought-leaders and celebrity ... respective audiences for taking steps to live healthier, ... in 2012, higi has built the largest self-screening ... 38 million people who have conducted over 185 ...
(Date:11/28/2016)... Nov. 28, 2016 "The ... of 16.79%" The biometric system market is in ... in the near future. The biometric system market is ... 2022, at a CAGR of 16.79% between 2016 and ... of biometric technology in smartphones, rising use of biometric ...
Breaking Biology News(10 mins):